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PREFACE

The science of planetary meteorology has developed very rapidly
during the last decade. Impetus from the data obtained during initial
planetary atmosphere experiments has stimulated research for more
detailed representations of the planetary atmospheres that are essen-
tial to future, more refined experiments. Specifically, this research
has entailed the development of more refined data acquisition techni-
ques and the establishment of theoretical and empirical atmospheric
models.

The scientific papers contained in this document represent a one-
year effort of the MSFCplanetary atmosphere study program. Emphasis
was placed upon the Mars atmosphere because of MSFCinvolvement in the
Voyager program, but in view of the decline in interest for planetary
exploration, the emphasis is now being placed upon the upper earth
atmosphere. However, since the planetary atmosphere study program was
established with versatility in mind, the techniques used in generating
Mars atmospheric information may also be applied to the earth's
atmosphere.

The first three papers, which are concerned with atmospheric pro-
cesses, provide theoretical concepts of the Mars atmospheric composition
and temperature. Techniques used in computing the ground surface tem-
perature and generating model atmospheres are described in papers 4 and
5, respectively. The next two papers provide empirical models of the
Mars atmosphere and are followed by a paper on the atmosphere of Mercury.
The feasibility of obtaining Martian atmospheric information from vacuum
chambersimulation experiments is discussed in the last three papers.

The editor wishes to express his sincere appreciation to S. Hightower
and I. Dolin for their efforts in preparing this document for publication.

AerospaceEnvironment Division
Aero-Astrodynamics Laboratory
George C. Marshall Space Flight Center
Huntsville, Alabama

Don K. Weidner
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CHEMICALKINETICSANDCOMPOSITIONOFTHEMARSAI_!OSPHERE

By

M. Bortner and F. Alyea*

SUMMARY N6s' ssa7

The composition of the Martian atmosphere as a function of altitude

is dependent upon the chemical kinetics. A complex chemical system has

been developed, and the chemical kinetics involved have been calculated.

These calculations resulted in a predicted steady-state atmosphere which

gives the concentrations of eighteen species as a function of altitude.

(The calculations involved fifty chemical reactions, ten of which were

photochemical.) A total density distribution and three elemental com-

positions (corresponding to those given by 80 percent COe, 20 percent

Ne; 90 percent COe, i0 percent Ne; and I00 percent C02) were assumed.

Mean and extreme solar flux values were used to evaluate the effect of

solar activity on the atmosphere. Although no account was taken of

diffusion, it is an important factor which should be considered in a

subsequent study.

Based on the results obtained for the neutral species, it is found

that COe is more than 50 percent dissociated at all altitudes above

60 km. Above this CO and O are major constituents. Ozone is present

in mole fractions comparable to those in the Earth's atmosphere.

Nitrogen oxides probably do not build up in large concentrations.

Charged species are more difficult to predict. Above 80 km elec-

trons are the only important negatively charged species. Below this,

negative ions, especially CO_, become important but none build up to

large concentrations. The major positive ions are 0+, N+ and CO+ at

high altitudes and NO + at lower altitudes.

The authors are associated with the General Electric Corporation,

Missile and Space Division, Valley Forge, Pennsylvania. This paper
was prepared for MSFC under contract number NAS8-22603.



I. INTRODUCTION

For someexperiments which have been suggested for Mars atmosphere
exploration to be successful, it is important to have well founded pre-
dictions of the atmospheric composition as a function of altitude. The

major component indicated by available data is carbon dioxide. However,

at high altitudes where solar flux in the effective wavelength range of

from 1300 to 1650 A is available, the carbon dioxide is largely dissoc-

iated. It is therefore not sufficient to know that the Mars atmosphere

is largely COe and that Ne is present; it is also necessary to know the

major species to be expected at each altitude. The fraction of COe

dissociated at various altitudes depends not only upon the solar flux

but also on a number of reactions, some of which involve minor species.

Only a thorough chemical kinetics investigation involving such minor

species and many reactions can establish these primary features.

In this study, the possible importance of a number of minor species

and many reactions was tested. Previous studies, which used only an

extremely simple chemical system, probably resulted in somewhat errone-

ous compositions because of these simplifications. The present study

has been conducted to be as complete in its chemical kinetics as neces-

sary to avoid this problem. Other features can be added in the future

so that the present study can be made more comprehensive.

II. ATMOSPHERIC DATA

The predictions of the atmospheric composition must be based on

available data and must agree with them within their limits of uncer-

tainty. Such available data, which have been described and discussed

in detail (e.g., Fjeldo et al. [8], Chamberlain [4], Chamberlain and

McElroy [5], Spinrad et al. [13], Owen [12], and Edelson [7]), are

limited primarily to pressure, spectra, and electron density measure-

ments. The information acquired from these measurements give direct

usable estimates of pressure as a function of altitude, pressure scale

height, electron density as a function of altitude, and total COx con-

tent. From these, indirect estimates of number density, temperature,

and certain other quantities have been made. The indirect estimates

involve certain assumptions which introduce considerable uncertainty

in the derived quantities. Since some of these quantities are used

in the calculations to be described, these calculations will involve

similar uncertainties. However, the results of this study might

possibly help in reducing the uncertainty in quantities that are

indirectly derived from future Mars atmospheric measurements.
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The data which are used in the calculations are the number density

as a function of altitude, the relative elemental composition, and of

lesser importance, temperature. The number densities were taken from

Fjeldbo et al. [9].

Since the C02 content of the icmrs a_osphere, as determined by

spectral measurements, appears to be nearly as large as the total

density derived from the pressure measurements, the composition of

the atmosphere has been assumed to be at least 80 percent C0e and

perhaps as much as i00 percent C02. For cases where the composition

consists of less than i00 percent COe, the remaining material is

usually assumed to be nitrogen. The latter assumption was accepted

in performing the calculations, but a further study with other gases

as the remaining material would seem in order. The elemental com-

positions assumed for the calculations were

(a) 0.8 C; 1.6 O; 0.4 N

(b) 0.9 C; 1.8 O; 0.2 N

(c) 1 C; 20.

The total density as a function of altitude is shown in figure i.

The solar flux at the top of the Mars atmosphere was obtained by

modifying the corresponding values obtained for the Earth, through use

of correction factors [i] to account for the different heliocentric

distances.

III. CHEMICAL SYSTEM AND CHEMICAL KINETICS

A. Chemical Species

The steady-state _oncentrations have been calculated as a function

of altitude. The concentrations are those of eighteen species compris-

ing seven neutral species, free electrons, seven positive ions, and

three negative ions. The specific species considered were as follows:

COe CO_

N e N_

N N+

CO CO +

0 0+

Oe O_

03 NO +

.

os

e



The concentrations calculated were steady-state concentrations for

an average solar flux and for a flux increased by a factor of 2.3 at

all wavelengths. Although time-varying concentrations should be cal-

culated using normal flux variations, such calculations were considered

to be outside the scope of the present study.

The calculations included the various photochemical processes and

the other chemical reactions which appreciably affect the concentrations

of the major species of interest. The attenuation of the flux through

the atmosphere was calculated along with the changes in concentrations

resulting from the photochemical processes.

B. The Chemical Processes

The flux at the top of the Mars atmosphere was calculated by com-

paring it with that at the top of the Earth's atmosphere. Calculations

were started at 150 km, an altitude sufficiently high that the attenua-

tion above it would be negligible. The total number density was deter-

mined at this altitude from the calculations described in paragraph IliA.

At this and at each succeeding lower altitude, the rates per reacting

particle of each of the various photoionization and photodissociation

processes were determined by integrating the product of the solar flux

and the effective cross section over the wavelength range of importance.

These integrals are then first-order rate constants since each, when

multiplied by the appropriate concentration, gives the rate of the

process. These and the other chemical processes were then used to

determine steady-state concentrations, which would be expected to be

reached only after considerable time. At altitudes where diffusion can

play a role, steady-state conditions would actually never be reached.

(The consideration of diffusion is another modification which should be

carried out in the future, but which is considered outside the scope of

the present study.)

Forty-four reactions were included in the chemical kinetics cal-

culations, and included photoionization, photodissociation, photo-

detachment, three-body neutral-neutral recombinations, neutral

rearrangement, dissociative ion-electron recombination, three-body

electron attachment, dissociative attachment, associative detachment,

ion-ion recombination, positive-ion charge transfer and charged

rearrangement, and negative-ion charge transfer and charged rearrange-

ment reactions. These are listed in table I along with constants used

in the study.

The rate constants used were taken from various reference sources.

Some of them are known with an uncertainty of perhaps 20 percent, but

others are only estimated. Obviously, this will introduce uncertainties

4



TABLEI

Chemical Reactions and Rate Constants Usedin the Chemical Kinetics Calculations

" I
Reaction8 Rate Constant_ (see) neacth>ne I Rate ConstxnL_ i,_cc}

I
J

PhotoloaizatJon

CO 2 + h V _ CO 2 + e

N 2 + hv _ N 2 + e

CO + h v _ CO + + •

O + hu _ O + + •

+

0 2 + h I/ _ 0 2 + e

N + hp _ N + + e

Photodleeoclatlon

CO 2 + hu --------_CO + O

0 2 + hv'------4_ O + O

0 3 + h v _ O + 0 2

Photodetach meet

0 + hv'--------_ 0 + e

Charge transfer, positive Ion

N 2 + CO2-'-"_b N 2 + CO;

N 2 + CO _ N2 * CO +

N; + N _ N2 + N +

N 2 + 0 2 _ N 2 + 0 2

+ ÷

N + CO 2 _N ÷ CO 2

Charge transfer, positive ion

CO + + O _CO + O ÷

CO + + CO 2---=t-CO ÷ CO;

+ +

CO 2 + 0 _ CO 2 + 0

Charged rearrangement, positive ion

CO 2 + N _ NO + + CO

+ +

CO_. + O ------*- 0 2 + CO

()_ ÷ CO 2 _ 02 + CO

Dissociative recombination

CO_ ÷ e --------_CO + O

*

N 2 + e --------I_N + N

NO+ + e _ N + 0

÷

0 2 + e --------d_ O + O

Ion-lon recombination

CO 2 + O- _ CO 2 + O

CO 2 + O- _ CO + O , + O

NO + + 0 3 _ N + 0 + 03

CO 2 + 0 3 _CO 2 + 0 2

o_ • o_---_% ,o 9

At_t>.h ment

O + e + M --------4--0 + M

0 2 + e + M --"'-'1_ 2 ÷ M

0 + e -=----_.0 + hl/

Associative delachment

0 2 + O _ 0 3 + e

O + CO -'--'_CO 2 + e

2.5 x 10 -7

3.0 x I0 -7

5,0 x 10 -7

2.9 x 10 -7

3 x 10 -7

-7
3 x I0

3 x lO -7

3 x I0 -7

3 x 10 -7

I x 10 "32

I x I0 -30

1.3 x 10 -15

3 x I0-I0

8 x I0 -I0

O + +
+ N 2 _ NO + N

0 2 + N _ NO + 0

Charge transfer, negative ion

02 ÷ 0 3 _ 0,2 * 03

O- + 03 --------,4_ O + O3

Three-body neutral recomillnation

CO + O + M "--"-'a-CO 2 * M

0 + 0 + M "--=---_s'-O 2 + M

N ÷ N + M _ N 2 + M

0 + 0 2 + M _ 0 3 + M

Neutral rearrangement

0 + O q -_'--_0 2 + 0 2

9 X I0 -I0

7 x I0 "I0

I X I0 -12

2 X I0 °I0

1.9 x tO -9

I x I0 "11

l, 1 X 10 -9

I X 10 -II

I x 10 -11

I x 10 -11

1.2 x 10 -9

.3 x 10 -12

2 X 10 -10

3 x 10 -10

7 x tO -I0

I x I0 35

9.8 x I0 -33

I.I x I0 -32

1.8 x 10 -33

7.7 -10



in the calculations. A major source of uncertainty in these rate con-

stants is the temperature effect. This is due to lack of accurate

data on the temperature variation of the rate constants and to the

uncertainty in the temperature itself. All rate constants were

evaluated at 200 °K although the temperature may be appreciably lower

at some altitudes. Since the value of rate constants at lower tem-

peratures, especially those of the order of i00 °K, is not known, the

use of values at 200 °K for all altitudes appeared reasonable.

After the concentrations of the eighteen species are calculated

at each altitude, the rates of six other reactions not included in the

iterative calculations are calculated to permit an estimation of their

importance and the effect of their omission. The reactions and the

rate constants used were as follows:

Reactions Rate Constants (sec)

+
N e + O- -_ N 2 + 0 3 x i0-v

+ 0+N2 + 0 -+ N e + i x i0 "le

Na+O+ -_ NO + + N 2.5 X i0 "IO

N+ + CO 2 -> NO + + CO i X i0 -ll

O_ + COe -+ C0_ + 0 e 4 x i0-l°

N+O +M -+ NO + M 1.3 x i0 "s_

Although the system of eighteen species and fifty reactions

appears to be rather complex, a closer examination shows that other

species and other reactions are also important. For example, the

major negative ion at low altitudes is none of the three included in

the fifty reactions but rather CO_, formed by the reaction

o +co2 co;+o2.

6



This species was not included in the basic calculations in order
to permit simplification. An estimate of the amount of 02, derived
from the amount of CO_, is being provided later in this report.
Deriving the amount of 02 from the amountof CO_is reasonable since
the major mechanismby which either is removedis ion-ion recombination.

x++

x+ + co;

neutral products

neutral products.

C. Kinetics of Individual Species

As mentioned previously, the concentrations of the important

species depend upon numerous reactions some of which involve minor

species.

C02 is dissociated and ionized by solar flux and is also con-

sumed by several charge exchange reactions. Although it is reformed

by the three-body recombination of CO and O, other reactions involving
+

ions (mainly 0 and various negative ions) provide faster production

of COe. This is shown schematically in the flow diagram in figure 2.

At low altitudes there is little dissociation since the effective flux

is absorbed at higher altitudes. At higher altitudes, COe is largely

dissociated because the reactions forming CO 2 are slow. At inter-

mediate altitudes, there is a steady-state in which several reactions

are important.

The kinetics of CO and of 0 are shown schematically in figures 3

and 4, respectively. The reactions shown are those which appear to

be the most important in controlling the various concentrations of

interest. The chemical kinetics of N e are shown schematically in

figure 5.

IV. METHOD OF CALCULATION

The rates of all the reactions were calculated using any set of

trial concentrations which were required only to fit the elemental

composition assumed. Then the ratio, for each specie, of the rate

at which it is being formed to the rate at which it is being consumed

was calculated. The individual concentrations were then changed to

bring them closer to the steady-state values, by making the ratios

nearer unity by a factor of as much as 1.5. Several concentrations

(including one carbon-containing species, one oxygen-containing

species, one nitrogen-containing species, and one negatively charged

species) were calculated by balance so that the total number of atoms



and the elemental composition would not be changed. The species so
calculated were usually those of the highest concentration. The pro-
cedure was then iterated a numberof times until the ratios were all
very close to unity. The attenuation of flux, as a function of wave-
length, was then calculated for a five_kilometer altitude interval,
assuming the composition and flux attenuation to be constant over that
altitude range and equal to that in the middle of the altitude range.
The flux so determined was then used as the initial flux for the
calculation of conditions at an altitude five kilometers lower. The
procedure was repeated for each 5-kilometer altitude increment down
through the atmosphere. This samecalculation was carried out for
each of the assumedatmospheres, that is, for each of the three assumed
elemental compositions and for two different fluxes. A flow diagram
of the computer program is shown in figure 6.

V. ATMOSPHERICCOMPOSITION

A. Neutral Species

The calculated atmospheric composition provides the concentra-
tions of the eighteen species listed in paragraph IliA.

Figures 7, 8, and 9 graphically give the results for the neutral
species.

The calculations predict CO2 to be more than half dissociated at
altitudes above 60 km. This is a somewhatlower altitude than given
in other predications (Fjeldbo et al. [8,9] and Chamberlain [4]), but
the data should be reliable because they are calculated from a con-
sideration of the detailed flux and its attenuation through the
atmosphere. COand 0 are the major species initiating from COeand
have approximately equal concentrations down to about 80 km. Below
this, COcontinues to increase to a peak at about 60 km while O
decreases due to the formation of Oewhich is important in the 50 to
90 km range. Ozone is present in concentrations of as large as about
one part per million peaking at about 65 km.

In the atmospheres considered where nitrogen was included, it was
found to be largely dissociated above 85 km. Data on reactions not
included in the iterative calculations indicate that nitrogen oxides
are not important, although a more complete investigation would be
required to eliminate this possibility completely. It appears that
someNOmaybe formed, but would be consumedrapidly by N + NO
reaction. The data obtained are sufficient to makea more complete
analysis of certain facets of the kinetics such as the nitrogen oxide
effects. This should be done when time permits.



I ne....... LtLL==atm._mpheres.... considered did not give drastically different
results for the neutral species. The preceding findings appear to hold
for all three compositions. Other than the obvious change in nitrogen
content, there is little variation of the altitude of the peaks or even
of their ....... _ma_L,_.... amongthe three cases.

B. Charged Species

The results of the calculations of the charged species are less
reliable than those of the neutral species. The data obtained showed
total charge densities which were muchhigher than the available experi-
mental data indicate. However, it is believed that the relative con-
centrations of the charged species are reliable. The data, therefore,
are presented in this form; that is, concentration relative to the
electron density. The data are shown in figures I0, Ii and 12. The
charged species data below 85 km are not reliable since the electron
density is extremely low and all ion kinetics are dependent upon the
electron density. Above 125 km there is also somedoubt about certain
of the species, although in general they appear reasonable.

Becauseof the difficulties in obtaining charged species concen-
trations above 125 km, the location of the electron density peak could
not be decided with high accuracy. However, in all cases, the electron
density dropped off below 125 km and whenany data were obtained above
this, a decrease was indicated. This would agree with the findings of
Fjelbdo, et al. [8]. It is noticed that diffusion would tend to change
the electron densities rather than to shift the peak.

In most cases considered, 0+ is the major ion present. With
appreciable nitrogen included in the atmosphere, NO+ does become
important at low altitudes and even becomesthe predominant ion at
85 km in the 20 percent Ne case. The importance of O_ and CO_was
found to increase at low altitudes.

No negative ions becomeimportant at altitudes below 85 km; e.g.,
O" is present in the largest concentration but only amounts to about
10-6 of that of the free electrons. O_ is important only in leading to
other negative ions, and this is of minor significance. O_ is found to
build up at low altitudes but not to significant concentrations. It is
probable that somenegative ions are present at altitudes below 85 km.
These are mainly CO_(probably over 90 percent) with some02. However,
it is unlikely that the ion densities at lower altitudes are large
enough to be important.



C. The Solar Flux

The solar flux is attenuated as it passes through the atmosphere.
The flux as a function of wavelength is shownfor several altitudes in
figure 13 for the 80 percent COe- 20 percent Ne atmosphere and as a
function of altitude for several wavelengths in figure 14. The attenua-
tion above ii0 km is small. Below this altitude, the flux at wave-
lengths below 900 A is rapidly attenuated and is essentially completely
absorbed by 85 km. Since this is the most important radiation for
ionization, there is little ionization below this, as indicated in
paragraph VB. The flux between 900 and 1350A persists to slightly
lower altitudes, as illustrated by the dotted lines which represent
a maximumand minimumin the COe cross section. The flux from 1350
to 1600_ is effective in dissociating COm. Because the absorption
coefficients (cross sections) for dissociation are smaller than for
ionization, the effective flux persists to slightly lower altitudes
than does the radiation of less than 900 A, which is completely absorbed
by the time it reaches an altitude of a little below 80 km.

The flux attenuation for the other atmospheres is not greatly dif-
ferent from that given above. In the case of the higher flux used, the
attenuation was at about the samerate although the curves in figure 13
would be moved to higher intensities; the relative results of figure 14
would not be changed. Thus, examination of the results for the two
cases indicates that the degree of ionization and dissociation would
be increased for the species Oe, N_2,N+, 0", NO+, O+, CO+, O_ and e
but would not changesignificantly for the species CO, O, COe, Ne, N
CO_,0_, O_ and 03.

D. The Diffusion Problem

Major uncertainties in the preceding calculations arise from the
omission of any diffusion processes. Considerable work was done on
this problem, and a method of including diffusion in the calculations
has been detailed. The following describes this work.

In addition to photochemical processes, the structure of the Mars
atmosphere is controlled by diffusion. At high altitudes, this can
be illustrated by the fact that, as the pressure decreases, the molecular
diffusion coefficient increases. Thus, in comparison with the decreasing
chemical reaction rates, molecular diffusion becomesdominant. On the
other hand, at low altitudes the interaction of the planetary surface
with the atmosphere causes winds and related phenomenato smooth
chemical variations by turbulent mixing. The following discussion
presents a mathematical model of the diffusing Mars atmosphere and
qualitatively examines the altitude regions which are controlled by
diffusion and chemistry.

I0



In a dynamic atmosphere, the flux of the diffusing species is
related to the chemicalproduction rates by the species continuity
equations.

dN.
+ -s[

dh l l (1)

where

N. = particle flux of species i (particles/cm 2 sec)
i

h = altitude

S_ = sum of the rates of all reactions producing species i
l

(particles/cm 3 sec)

S = sum of the rates of all reactions removing species i
l (particles/cm 2 sec).

Because the charge neutrality is preserved, the summation of N i over
all charged species must be zero. Thus, if there are L species con-

sidered in an atmospheric model, there are L-I independent equations

in the set, equation (i), and a charge balance

_. =0Z i N i

i

(2)

where

Z i = charge on species i.

The Stefan-Maxwell relations as generalized to a multicomponent mixture

relate the diffusion fluxes to the concentration, pressure, and electric

field driving forces present in the model atmosphere. These equations,

well documented in the literature, were obtained from Hirshfelder,

et al. [i0].

X.N.- X.No dX. <i M _ d _n P X.Z.E
.I I i I = i ,.i

nDi. d--h--+ X. -t dh kT

j ij

(3)

ii



XjN i - XiN j2i nO :0
1]

i j

where

X. = mole fraction of species i
i

n = total number density

D..= binary diffusion coefficient of species i and j
i]

M. = molecular weight of species i
l

= average molecular weight of gas

P = pressure

E = electric field induced by charge separation

k = Boltzmann constant

T = temperature.

Charge balance then supplies the equation for the induced electric

field.

(4)

k--_E__, "Ze" = - I _ d _nPdhxj J
J J

XjN i- XiN jo
j i i I

(5)

Notice that the above equations do not use binary, ambipolar diffusion

coefficients since these are not applicable to a multicomponent mixture

per se. (Blanc's law must be employed.) However, this effect has been

considered by the inclusion of the induced electric field. Several

auxiliary relationships necessary to complete the model include the

hydrostatic equation:

dp p (6)
dh = -Pg = - H

12



where

P = mass density

g = acceleration due to gravity

H = scale height,

and the equation of state

P -- nkT

or

R
P = _ OT. (7)

fi

Examination of equations (i) through (7) indicates a coupled set of

differential and algebraic equations which relate the diffusion fluxes

and species concentrations to the solar flux (photochemistry) and the

gravitational attractive force of the planet. As mentioned above, the

dominant terms in the equations are a strong function of altitude with

diffusion controlling the upper atmosphere and chemistry important near

the Mars surface. It is 0f interest to qualitatively determine the

altitude region where both effects are of the same order.

Rearrangement of the left-hand side of equation (3) results in the

approximate expression

_. X N. - X.N. N i
,1 z Z,l___

nD.. nD..

j 13 z]

(8)

An approximate flux for species i can be obtained by neglecting the

chemical loss terms, SI, and integrating equation (I) over altitude

o0

/ S.+ dhNi z

h

(9)

13



thus combining equations (3), (8) and (9)

oo

fs dh
dxih
dh _ nDij H " (i0)

Examination of the two terms on the right-hand side of equation (I0),

using the results of the previously described nondiffusing atmospheres,

indicates that a very sharp distinction between diffusion and chemical

dominance is achieved between 85 and 105 km. This is illustrated for

electrons in table II using the results for the 90 percent CO e i0 per-

cent N2 atmosphere.

TABLE II

Comparison of Diffusion and Chemical Dominance

Altitude

(km)

85

90

95

i00

105

ii0

115

Chemistry

co

/s dh
h

nD..
i]

1.4 x 10 -9

1.2 x 10 -9

6,5 x i0-l°

3.7 x I0 -I°

2.1 x i0 -l°

1.3 x i0"l°

7.2 x I0 "ll

Diffus ion

X i M.

2.8 x I0 -13

i.i x 10 -9

i.I x 10 -9

5.1 x 10-9

1.9 x i0 -s

3.7 _ 10 -8

7.2 x 10 -8

14



Thus, it can be concluded that diffusion will play a major role in
determining the profile of the electron density. Notice that diffusion
will not alter the position of the peak significantly. However, the
maximumconcentration would be expected to decrease.

Vl. CONCLUSIONS

Based on the results obtained for the neutral species, it is found
that C02 is more than 50 percent dissociated at all altitudes above
60 km and COand O are the major constituents. Ozone is present in
quantities of as muchas one part per million. Nitrogen oxides probably
do not build up in large concentrations.

Charged species are more difficult to predict. Above 80 km, elec-
trons are the only important negatively charged species. Below this,
negative ions, especially CO_, becomeimportant but none build up to
large concentrations. The major positive ions are 0+, N+ and CO+ at
high altitudes and NO+at lower altitudes.
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SUMMARY

To provide a model for the overall structure of the Martian

atmosphere, the methods of kinetic theory are applied to the case of an

ideal gas in a gravitational force field. For the lower atmosphere,

the distribution function of molecular velocities can be easily obtained

because the motion of the molecules comprising the system can be con-

sidered to be perfectly random. However, in the upper atmosphere, the

molecular velocities are no longer isotropic, and the distribution

is not easily obtaine_ except in a certain limiting case in which

collisions are so infrequent that they can be neglected altogether.

If this assumption is made, the temperature profile may then be

derived from a calculated atmospheric constituent distribution function.

Once an adequate treatment from the kinetic viewpoint is obtained,

chemical and radiative processes might possibly be regarded as per-

turbations.

I. INTRODUCTION

The structure of a planetary atmosphere cannot be described by

any one simple scheme. Many processes, such as chemical decomposition

and recombination, radiative processes, conduction and convective

currents, solar activity, and planetary motion will, in general,

influence the behavior of a planet's atmosphere [I]. However, simple

considerations from kinetic theory are particularly useful in providing

a first order approximation to the overall structure of planetary

atmospheres. With all other factors disregarded, the problem of

planetary atmospheres becomes one of calculating the distribution of

molecules of an ideal gas in a gravitational force field.

For the lower atmosphere the number density of the molecules is

such that the gas can be treated using a Maxwellian distribution function,

and its various properties can easily be calculated. Under these con-

ditions it is found that the number density and pressure variations

with altitude obey the hydrostatic equation, and the temperature remains

constant. Deviations from these predicted results for the lower atmosphere

can be explained by taking into account radiative and chemical pro-

cesses and the fact that under these circumstances the atmosphere behaves
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somewhatas a fluid. In contrast, the upper atmosphere does not lend
itself to such a simple theoretical scheme.

The basic difficulty arises from the fact that, since the mean
free path of the molecules is large, the motion of the system is no
longer random. Indeed, above a certain height, namely, that height at
which the meanfree path becomesgreater than the scale height, the
molecules moveas tiny satellites in the central force field of the
earth since the effects of collisions becomeinsignificant [2]. The
region between these two extremes represents a kind of limbo for the
theoretician that cannot be adequately described within the scope of
this paper. Here a simple description of the upper atmosphere extreme
will be given. This model readily lends itself to application to the
Martian atmosphere since its relatively insignificant magnetic field
will not appreciably affect the streaming of charged particles into
space.

II. PROCEDURE

To provide a model from which the temperature profiles of the
upper Martian atmosphere can be calculated, it is assumedthat there
exists an exospheric boundary below which the molecules constituting
the atmosphere follow a Maxwellian distribution and above which the
molecules are essentially collisionless° The motions of molecules
streaming from the boundary of the exosphere are governed by the
principle of conservation of energy and the principle of conservation
of angular momentumtaken about the center of the planet. These provide
two equations which relate the variables at the base of the exosphere
[3]. The two equations so obtained maybe used as transformation
equations to obtain a distribution of molecular speeds at any point
above the base of the exosphere from the assumedMaxwellian distri-
bution at the base. These transformation equations maybe written as

P 2 GM
r _ = V° + (r - R)Rr

and
R

= -- sin0oV sin0 Vo r

where G is the universal gravitational constant and M is the massof
the planet. The other sy_ols are defined in Figure I. The differential
volume element at somepoint in the portion of phase space above the
exospheric boundary is related to that at the base of the exosphere in
the following fashion:

(V° @°' _o ) dVd0d_ ,
dVod0od_o = J V, O'
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where J is the Jacobian of the transformation and is given by

j _-v°'. 8°' _° ) = v2r c°s 8

V, 0, ¢ V2 R cos 0 °
o

Integrating over the angular coordinates 8 and _ with limits of inte-

gration consistent with the values of 8 and _o, we obtain a distri-
bution function of molecular speeds for°a single atmospheric component

at any point r above the boundary of the exosphere

dN v = AV (V2 + B) I/2 exp [ M (V2 + B)] dV ,
2kT

o

where

B = 2 GM <r - R)
Rr

and A is a constant. The kinetic temperature is defined by the relation

T = M(V2)
3k '

where the mean value of the square of the molecular speed at any level

r, (V2), is obtained from the above distribution function and the usual

method of obtaining the average value of a continuum.

(V 2) =

J'_ V2
o dN v

Notice that the molecules which do not reach the height h = r - R are

neglected by taking the lower limit of the integrals to be v = 0.

The result of this integration is

T '--TO (1 +-_-) ,

whe re

= (mg R h ,
z 2 kT °
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and h is the distance above the exosphere. Figure 2 gives a temperature
profile for To = 320°K and R = 200 km. This procedure may readily be
extended to the case where the exosphere is composedof more than one
type of molecule. For an exospheric boundary containing two constituents
of massesmI and m2, the temperature is given by

2_ Rh iml + K m2 )

T ="T o + 3K(R + h) i + K

where

=n2 I m2) I/2

and n I and n2 are the number of molecules of each constituent per unit
volume at the base of the exosphere. An extension to more than two

constituents is also possible.

III. CONCLUSIONS

The primary objection to using this approach is in assuming that

there exists a well-defined boundary between multiple-collision and

collisionless regions. This boundary could not exist for any

appreciable time since the diffusive characteristics of the gas

would rapidly cause such a discontinuity to vanish. Nevertheless,

neglecting chemical and radiative processes, it can be safely assumed

that this temperature curve represents an upper bound for the actual

temperature profile for Mars in the region immediately above the

exosphere and approaches the actual temperature profile at very large

altitudes. The effect of collisions will cause the lapse rate to be

smaller than is predicted here since the proportion of molecules at

high speeds will be reduced by "shielding" effects and momentum ex-

change processes. So that an acceptable temperature profile can be

obtained, an analysis of systems which differ slightly from perfectly

random motion must be made. The profile so obtained must approach a

constant value for the temperature as predicted from a Maxwellian

distribution at the base of the exosphere and the profile given here

at large distances above the exosphere. In any event, the temperature

of the upper atmosphere of Mars increases with altitude.
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SUMMARY

A modified radiative-convective model is established for the pre-

diction of the surface and atmospheric temperatures at a given point on Mars

in terms of Earth dates. Other atmospheric parameters can be calculated from

this model with the aid of the proper concept or theory. Calculations may be

made at points laid out in a grid over a specific region of interest on

the Martian surface, and synoptic maps of isotherms and contours can be

constructed. These maps may be used to estimate the motions of the Martian

atmosphere, both horizontally and vertically. It is likely that the results

obtained from this modified model would show an approximate structure of the

atmosphere, but further work is required to justify the validity of the model,

since circulation has not been taken into account and the Martian atmosphere

has been assumed to be steady state.

I. INTRODUCTION

In the future exploration of Mars, it is necessary to predetermine

the environmental conditions to be encountered by any space vehicle penetrating

the Martain atmosphere and landing on the Martian surface. Our present

knowledge of the Martian atmosphere is limited by many undetermined factors,

both physical and dynamic. Because routine observation cannot be conducted,

the actual structure of the atmosphere still remains in question. However_

it is possible to construct a model atmosphere from theoretical considerations
of radiative-convective transfer when the active constituents of the atmo-

sphere are quantitatively known.

Early studies of the radiative equilibrium of a non-gray atmosphere

have been carried out by Gowan [i], Goody [2], King [3, 4], Yamamoto [5],

Moiler and Manabe [6], and others. Because of the complete disregard for

atmospheric motion in the computations, the general characteristic of the

purely radiative equilibrium calculation is that it tends to overestimate the

surface temperature on one hand, and to underestimate the upper tropospheric

temperature on the other hand. To overcome this defect the process of a

convective adjustment to approximate the upward heat transfer by atmospheric

Prepared for NASA/MSFC under Contract NAS8-20082.
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motions must be considered. It is expected that this process of convective
adjustment will transfer heat energy from the surface of the planet into the
lower and upper troposphere and thereby permit more realistic temperatures
to occur throughout the troposphere. This type of study has been madefor the
Earth's atmosphereby Manabeand Strlckler [7], in which the whole atmosphereis
divided into eighteen layers. They indicated that it is possible to obtain
a vertical distribution of the atmospheric temperature, which almost exactly
satisfies the condition of radiative or thermal equilibrium, as the asymptotic
steady state of the initial value problem. Other similar studies were made
for the Martian atmosphereby Prabhakaraand Hogan[8], and Leovy [9], in
which the atmospherefrom the surface up to i00 km altitude is considered
to be fifty layers of equal geometric thickness and two layers of equal
pressure difference. The results of their calculation again showeda fairly
goodapproximation of the thermal structure of the Martian atmosphere.

A good theoretical model of the atmospheric structure should not only
include the process of radiative transfer, but all the important dynamic
processesas well. Therefore, it is worthwhile to consider a radiative-
convective modelwhich can not only provide a practical meansfor determining
the environmental conditions of a specific region on Mars during a specific
time period in the past or future, but can also be incorporated in an advanced
general circulation model of the atmosphere.

In this study, a modified radiative-convective model is established
for calculations of surface and atmospheric temperature at a given point on
Mars in terms of Earth dates. Other atmospheric parameters can then be cal-
culated from this modelwith the aid of proper concepts or theory. If the
calculations were madeat a grid of points lald out over a large portion of
the Martian surface area, then the synoptic mapsof isotherms (lines of equal
temperature) and contours (lines of equal height) could be drawn, which would
approximately represent the structure of the Martian atmospherein three
dimensions. Although the initial condition of the atmosphereis assumedto
be steady state, i. e., no circulation has been taken into account in the
computations, the horizontal wind field, becauseof the differential heating
on a rotating planet, can be derived from the synoptic maps. A further appli-
cation of the model, in addition to serving as the basis of a dynamicmodel,
is to calculate the vertical motion of the air.

II. THERADIATIVE-CONVECTIVEMODEL

To establish a numerical model for the calculation of temperature
on Mars, the thermal structure of the atmospheremust be considered from both
the empirical and the theoretical viewpoints. A model should be established
in sucha way that it is not only supported by theory but is also in agreement
with observations.

There is a considerable amountof information in the literature on the
thermal structure of Mars; amongthese documents, the data obtained by radio-
metric and spectroscopic meansprovide reasonably good temperature measurements.
More reliable information was recently obtained from the Mariner IV occultation
experiment, from which several possible models'of temperature height profiles
have beenderived (Johnson [i0], Chamberlainand McElroy [ii], Fjeldbo [12],
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and Smith [13]). These were based on differing theoretical assumptions con-

cerning the main ionization layer in the Martian atmosphere over Electris, near

50°S, 177°E at 1300 hours local time in late winter. Three different names

(E, FI, and F2) were given to these profiles based on Earth analogy. Among

these models, Johnson's F2 hypothesis [i0] seems preferable. In this model, photo-

dissociation of CO 2 and diffusive separation result in an atomic oxygen upper

atmosphere, with O+ being the principal ion in the isothermal top side of the

ionosphere [14]. The low particle concentration associated with the identifi-

cation of the peak ionization as an F2 peak requires that the atmosphere be

very cold. The low density observed by Mariner IV near the surface indicates

that the atmosphere consists almost entirely of CO 2. The E and FI hypotheses

both require mixing or negligible dissociation of CO 2 in order to avoid the

preponderance of atomic oxygen in the region where the data show a constant

plasma scale height [12 and 14].

Previous investigations have also been made to obtain the temperature

distribution of Mars from theoretical calculations based on the radiative-

convective concept. In addition to those mentioned in the previous section,

Ohring [15] and Neubauer [16] have also contributed a large amount of information

on the thermal structure of Mars. However, for simplicity Leovy's two-layer

model is considered in this study because it is suitable as a basis of an

advanced dynamic model such as the one Mintz [17] has proposed.

In this study, the Martian atmosphere from the surface to lO0-km

altitude is considered. Johnson's F2 hypothesis [I0] and Leovy's radiative-

convective model [9] were modified to develop a new model. Figure I illustrates

the assumed structure of the model in which the Martian atmosphere is divided

into two layers. The lower layer (from level 3 to G) contains half of the

tropospheric air mass; the upper layer (from the top of the atmosphere to

level 3) contains half of the tropospheric air mass and the mass above the tro-

popause. The principal features of this model are: the Martian surface pressure

is 8 mb; the atmosphere is considered to be entirely carbon dioxide with a

molecular weight of 44.0 near the surface; it would change from a purely mixed

medium to a gas undergoing strong dissociation and diffusive equilibrium at

about 60-km altitude [18]; the vertical temperature profile first follows

a near adiabatic lapse rate from surface to tropopause, then decreases

linearly upward to 100-km altitude where the temperature is constant at 85°K;

and there is a very thin subsurface layer near the surface (from level 4 to

G in Figure i) into which the temperature is also assumed to be continuous.

Since the Martian atmosphere is largely transparent to solar radiation,

most of the incoming solar energy is not absorbed directly in the atmosphere

but rather at the surface. This energy is carried into the soil by conduction

and then upward into the atmosphere mainly by turbulent convection. Some

of the energy is emitted from the surface directly to space, and the energy that

the atmosphere receives by turbulent convection is lost in the form of long-

wave radiation. Thus, the thermal structure of the Martian atmosphere is con-

trolled by radiative, convective, and conductive processes. In our model,

variation of temperature below i00 km is taken into account, but the thermal

structure above i00 km is assumed to be unchanging.
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0.00191

1.64

3.23

4.82

6.41

8.00
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The equations governing the temperature variations of the atmospheric

layers are

dt -- a SO - $3) + (V3 - F0) + C (I)

and

dT---_h= ICp_p)dt b [($3 - $4) + (F4 - F3) + (C4 - C3 )] (2)

CAp

where T is temperature, t is time, -P-- is the heat capacity per unit area of
g

each layer, S is solar energy flux, F is infrared radiative energy flux, and C

is convective heat flux.

The heat conduction equation applying at subsurface levels is given

by

BT _2T
--= k-- (3)

_t _Z 2

where k is thermometric conductivity of the soil.

The boundary conditions are

dT I
-0

dt

(_zT) G _ i _ _ _(PC)Gk IS 4 (i A) F 4 C4]

dM
d-_ = O, when M = 0 and TG > T s

or

(4)

(5)

(6)
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dt = _ LF4 + C 4 - S 4 (i- A) + (PC)G k °I z)GJ (7)

T G -- T°, when M # 0 (8)

where A is the visible albedo of the ground, T is the equilibrium temperature

of CO 2 between solid and vapor state, M is theSmass of CO 2 per unit area con-

densed on the Martian surface, L is the latent heat of CO2, and (pc) G is the
volume heat capacity of the soil.

The methods of integration of equations (i) through (3), and (5)

through (8) have been treated by Leovy [9]. Since the flux of solar radiation

reaching a point at the outer limit of the Martian atmosphere at a given time is

S O -- SO0 Cos _ U(Cos _)

where SO0 is the solar constant, Rm and R are, respectively, the mean and actual
distance-of Mars from the Sun, _ is the zenith angle of the Sun, and U(Cos _) is

the unit step function which has the value of either one (when O<Cos_!l) or

zero ( when Cos_<O). If scattering is neglected and the absorption in the atmosphere

is properly assumed, the terms (S O - $3) and (Sq - S&) appearing in equations (i)
and (2) can be calculated based on the method discussed by Houghton [19]. The

net upward radiative energy flux at a level can be estimated by making use of the

Schwarzschild equation. A typical method for calculating the radiative energy flux

has been shown by Leovy [9], where in our model, the emission at zero optical depth

is a constant, because TO(= TI) is always 85°K. The thermometric conductivity

and the convection parameters used by Leovy were estimated from the observed diurnal

ground temperature variations of Sinton and Strong [20]. The variation of the

specific heat of CO 2 at constant pressure was also estimated as a function of

temperature only.

Since the amount of solar radiation received by the Martian surface per

unit area at a given time differs from one place to another, the incident solar

radiation flux is dependent on the zenith angle of the Sun. By means of vector

analysis, the cosine of the zenith angle of the Sun with respect to a point on

the Martian surface of longitude, %, and latitude, _, can be shown to be

Cos # = Cos_ Cos D Cos% Cos LSS + Cos_ Cos D Sin% Sin LSS + Sin_ Sin D (i0)
s s s

where D and LSS are respectively, the Martian latitude and longitude of the sub-
s

solar point. A method for calculating the subsolar point has been developed by

Deshpande [21] and the actual distance from Mars to the Sun appearing in equation

(9) can be found from the American Ephemris and Nautical Almanac [22].
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III. CALCULATIONSOFTEMPERATURE
ANDOTHERATMOSPHERICPARAMETERS

The immediateapplication of the model as described in Section II
is to calculate the surface and atmospheric temperatures of Mars, TG, Ta, and
Tb (see Figure I), at a given time over a grid of points laid out on the
Martian surface. Thesegrid points are equally spaced, an interval of 5 to i0
degreesof latitude and longitude being sufficient for large-scale meteorological
analysis.

In calculating the temperature, the Martian surface is assumedto be
a smoothuniform sphere with constant thermometric conductivity; the initial
condition of the atmosphereis assumedto be steady state; and atmospheric
water-vapor content is considered negligible.

The acceleration of gravity at latitude _ is defined by the following
relationship:

GM dE
g = 7 [i - 3J2(_--)2 P_] (II)

5 3 2
whereGM= 0.429778x i0 km /sec , d E is the radius of Mars (3381 km), d is the
distance in kilometers from the center of Mars to the point of interest, and

the constant J2 is a measure of the flattening of the Martian surface which has

the value of 0.1947 x 10 -2 and P_ = 3 2 i, _ sin _ - _.

All calculations are to be made at constant pressure levels. The

values of pressure assumed for the model were listed in Table i. Experience

has shown that any reasonable estimate of temperature at the initial time, t=0,

will suffice if the initial time is sufficiently ahead of the time period for

which a solution is desired. In other words, the governing equations must be

integrated until the equilibrium state is reached.

In practice, a computer program can be established based on the

equations described in Section II. Once TG, Ta, and Tb are calculated, the

following atmospheric properties can be obtained as well.

From the hydrostatic equation and equation of state, the temperatures

T2, T3, and T 4 in the layer of constant lapse rate atmosphere (from level 4 to

level 2 in Figure i) can be calculated according to the relationship

R*y

= T (Ph+l)g_

Th+l h _ (12)

where the subscripts h and h+l represent levels at Z=h and Z=h+l, respectively,

R* is the universal gas constant, • is the mean molecular weight in the layer

Z=h to Z=h+l, and ¥ is the actual lapse rate of the layer which is determined

by the calculated values of T and Tb.a
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The geometric height of each level can be obtained as

Ph (13)R*
7h+ 1 : Zh + _ T In--Ph+l

where T is the mean temperature of the layer from Zh to Zh+ ] .

The density at each level is given by

(_-_,_+ i)
Ry

"Th+----!) (i4)
Ph+l = Ph _ Th

At surface h=0, the density Ph=0 can be solved from the equation of state

Ph=0 mh=0

Ph=0 = R* Th= 0

(15)

The number density can be calculated as

Ph R*

_h - mh K

(16)

where K is Boltzmann's constant.

The columnar mass of the atmosphere is

Ph
_0

Mh = gh
(17)

The geometric pressure scale height is

R* Th
Hh = (18)

mh=0 gh

The potential pressure scale height is

R* Th
!

= mh=0 gh=0

The potential density scale height is

, Th

Hph mh=0 gh=0 dT

R* + d--h

and, finally, the geometric density scale height is given by

gh=O I

Hph = gh Hph'

(19)

(20)

(21)
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IV. METEOROLOGICALANALYSISANDAPPLICATION

Basedon the results obtained from Section III, the synoptic maps
of isotherms and contours at constant pressure levels can be analyzed over
a specific region of interest or over the whole hemisphereon Mars. The
standard meteorological analysis technique can be applied for this purpose,
wherein a hemispheric mapbased on Mercator's projection is prepared for
plotting and analysis. Thesesynoptic mapsprovide not only the picture of
three-dimensional structure of the Martian atmospherebut also the source of
data which can be used to obtain someother atmospheric properties. A few
applications of these synoptic mapsare discussed as follows.

A. Equilibrium Motion

BecauseMars and Earth have manysimilar physical properties such as
nearly equal rotational rate, nearly equal axial tilts, etc., the two planets
can be usefully compared. WhenLe Chatelier's principle applies to geophysical
phenomena,various possible equilibrium motions result. Basedon Earth analogy,
the GeodynamicParadoxalso can be applied on Mars, which states that on the
rotating Mars a particle subject to a constant force does not moveparallel to
the force with constant acceleration as expected, but ultimately will move
perpendicular to the force with constant speed. The final state will be one
in which the net acceleration is zero, the motion is horizontal, and the only
forces present are those owing to pressure gradient, gravity, and Mars rotation.
The horizontal equations of motion will then yield the geostrophic wind com-
ponents

u (_z)

(_z)
v=_f _xxp

(22)

where f is the Coriolis parameter, 2_ sin _, and _ is the angular velocity of
rotation of Mars. o o

Equation (22) can be solved by finite difference analog using the

contour map obtained earlier.

The direction of geostrophic wind is parallel to the contours with

low values on the left in the northern hemisphere, and on the right in the

southern hemisphere. Caution must be taken that the geostrophic approximation

is not applied in equatorial regions, since f vanishes as _ approaches zero.

On the other hand, friction must be taken into account at or near the

Martian surface. If we assume that the friction acts exactly opposite to the

direction of motion and proportional to the speed of motion, the horizontal

equations of motion become

0 = fv - koU

and l_p (23)

0 = -fu - koV - _ _y
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where the isobars have been oriented in the East-West direction, and k is a
R_ _14m-[n_i--[nn _ nht_'[n o

f
U -_" --

2
f2 + k0

v = - k@
2

f2 + ko

The total wind speed

=VU+v l (! _p
2 0 _Y)

4f2+ k0

which, when friction is present, is below the geostropic value.

of the wind can be obtained by

(24)

(25)

The direction

k
V O

tan _ ..... (26)u f

Further application can be made using the thermal wind equation.

The vertical shear of the _,eostrophic wind is given by

_u (_T)
-_" = - _ _ P (27)

_v _& (_T) ,
_z- fT _xp

Thus, for u to increase with height, temperature must increase to the

South, and for v to increase with height, temperature must increase to the East,

in the northern hemisphere.

Since the vertical shear of the geostrophic wind is a vector which

lies parallel to the isotherms on a level surface with low temperature on the

left in the northern hemisphere, the properties of the thermal wind may he

used to show the relationship between the turning of wind with elevation and

horizontal temperature gradient. Thus, the wind turns clockwise with height

whenever there is a wind component from warm towards cold air, and turns

counterclockwise with height whenever there is a wind component from cold towards
warm air.

One special case is when the thermal wind equations equal zero. In

this case the atmosphere is said to be barotropic in which case the absolute

vorticity is conserved, and the motion is simply two-dimensional.

Another approach to calculate the thermal wind is from the thickness

chart. Since the thickness of two pressure surfaces can be drawn quickly by

superposing the two contour maps in question and subtracting graphically, the

speed of the thermal wind, VT, is given by

VT K hTh= - f AH (28)

where ATh is the height interval of the thickness lines and AH is the distance

apart of the thickness lines. The direction of the thermal wind is parallel to

the thickness lines with lower thickness to the left in the northern hemisphere.

Thus, the thermal wind is related to the thickness lines exactly as the geo-

strophic wind is related to the contour lines of an isobaric surface.
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Becauseof the fact that the thermal wind is the shear along the
vertical of the _eostrophic wind, the geostropic wind at lower level, _., andL
upper level, _ U' are related to the thermal wind, _ T' in the following way:

U = _ L + _ T" (29)

This relationship provides a qualitative method of estimating the

geostrophic wind at a higher level or vice versa.

B. Vertical Motion

Although the motion in the Martian atmosphere is believed to be

predominantly horizontal, it does not mean that the vertical motion is absent,

but that its magnitude is probably much smaller than the horizontal motion.

Furthermore, the vertical motion of the air plays an important role in the

evaluation of the flow patterns; therefore, it is of great interest to estimate

the vertical velocity.

As on Earth, several methods can be used to compute vertical

velocity, among which the adiabatic method is considered to be preferable

in synoptic calculation. Since the potential temperature, 0, is conserved by

the individual unit of air in the adiabatic process, the vertical velocity in

P-system is given by

30 20

a--f+ VH
3e (30)
_p

where m* _ dd-_t,_8 is the local rate of change of 8 in an isobaric surface,
3 g0

V, the horizonta_ speed of wind, and-c-the variation of 8 per unit distance

a_ong the streamlines. _ s

If the vertical velocity is expressed with height as the vertical

coordinate, one readily obtains from Poisson's equation and the hydrostatic

equation,

_T 3T

2-7+ vH

w = rd _ y (31)

dZ

where w - dt' Fd and y are dry-adiabatic and actual lapse rate, respectively.

3T

In equation (31), the temperature tendency, _, can be obtained fromt
two consecutive synoptic maps. The actual horizontal speed of the wind is V H,

but the geostrophic value may be used in the calculatio_Texcept in the very
shallow frictional layer near the Martian surface, and _-- can be obtained by

the finite difference method. Thus, the vertical velocity at a given point

on Mars can be numerically calculated.
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V. CONCLUSIONS

The model is capable of predicting the surface and atmospheric

temperatures at a given point on Mars in terms of Earth dates as they would

occur in the absence of circulation. Isothermal and contour maps can be

used to derive the horizontal and vertical motions of the Martian atmosphere,

and the diurnal and seasonal variabilities of temperature also may be analyzed

over a certain period of time. It is likely that the results obtained from

the model will yield the approximate Martian atmospheric structure. The

assumption of steady state may not be realistic, in which case any scale of

circulation would probably modify the temperature distribution. However,

there is reason to believe that the modification of temperature due to circu-

lation may be small in the Martian atmosphere because the atmosphere is thin

and acts as an efficient radiator.

The calculated temperatures should be compared with those obtained

from previous investigations, such as the radiometric and spectroscopic measure-

ments, Mariner IV occultation data, etc. Obviously, once winds are introduced,

heat will be transported from one place to another and thus smooth out the

temperature gradient. As a consequence, the calculated temperature gradient

should be stronger than those observed.

The basic approach of predicting temperature, as discussed in this

study, could be applied to any model atmosphere such as Manabe's and Strickler's

[7] eighteen-layer model. Prabhakara's and Hogan's [8] fifty-layer model, or

any others. Furthermore, better temperature distribution is expected by using

a model with many layers if the final goal of treating the problem is based on

a purely thermodynamic point of view.

Since no computation has been made, the validity of the model itself

and the flexibility of the technical approach require justification. It is

believed that further improvement can be made by using this model as a basis

for a dynamic model from which a more realistic Martian atmopshere structure

will result.
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SUMMARY

An analytical model for predicting the surface temperature of Mars has

been developed. Based on the analytical model, a digital computer program

was written which locates the subsolar point on Mars, calculates the shape

factor of a specific point on the Martian surface with respect to the Sun, and

then solves the governing radiation and conduction heat transfer equations to

establish the surface temperature, as well as the radial temperature profile

beneath the surface. In developing the model, Mars was considered to be a

smooth sphere with a uniform outer coating and a homogeneous interior. The

atmosphere was not included in the model. The model is self-sufficient in

that it can be used to predict the temperature at a specific planetographic

latitude and longitude in terms of Earth time without use of astronomical

tables.

The predicted values of the latitude of the subsolar point are in good

agreement with the published values. The predicted temperature profiles using

a two-layer model of powdery limonite over solid basalt are in general agree-

ment with the observed temperatures, especially in the brightlands. Predicted

nocturnal temperatures are slightly lower than observed surface temperatures,

due to the absorptive and radiative characteristics of the atmosphere which
are not considered in the model.

I. INTRODUCTION

The thermal environment of Mars has been the subject of a number of

studies [1-8]. These studies generally fall into one of two categories.

The first category involves astronomical observations such as those reported

in [i, 2, 3], with a limited explanation of the thermal phenomena observed.

The second category, such as reported in [4-8], involves the formulation

of analytical models which produce temperature-time histories, isothermal con-

tour maps, and thermophysical property values. The temperatures predicted by

such models are surface temperatures, atmospheric temperatures, or both. Such

analytical treatments generally are based on Martian local time and involve

a spatial coordinate system which is not clearly defined or related to the

*Prepared for NASA/MSFC under Contract under NAS8-20082. 49



Martian surface. In the past, no practical meanshas beenavailable for de-
termining the thermal environment of a specific region on the Martian surface,
during a specific Earth time period, without first referring to astronomical
tables and then performing a numberof calculations based on these tabulated
astronomical data.

An analytical model in the form of a digital computer programhas been
developed for predicting the surface temperature of Mars at a specified plane-
tographic position at a specified Earth time without reference to the astro-
nomical tables. Subsequentportions of this paper describe the initial efforts
involved in the developmentof this engineering tool. For the sake of sim-
plicity in these initial efforts, the Martian atmospherehas not been taken
into account.

II. TECHNICALDISCUSSION

Becauseof the eccentricity of the Martian orbit, Mars receive_; 43 per-
cent moresolar energy at perihelion than at aphelion. Therefore, the amountof
heat and light received by the two hemispheresduring like seasonsis quite
different. The inclination of the equator of Mars to its orbit is 24794,
which is within 1-1/2 degrees of the corresponding inclination of Earth. The
eccentricity of the orbit, period of rotation, and equatorial inclination
influence the diurnal and seasonal temperature variations on Mars.

The prediction of the diurnal variations of the Martian surface temper-
ature has been carried out in three phases. The first phasewasdevoted to the
calculation of the subsolar point on Mars. In the second, heat transfer equations
were developed for the calculation of Martian surface and subsurface temperatures.
During the third phase, the results obtained were comparedwith existing
temperature measurements.

A. Calculation of Subsolar Point on Mars

In carrying out a radiation analysis of Mars with the view of pre-
dicting the surface temperature, it is necessary tocalculate the related
shapefactor betweenMars and the Sun. By definition, the shapefactor repre-
sents that fraction of the total solar energy which is incident on a given
surface on Mars. The shapefactor is a function of the solar zenith angle*,
in turn, dependson the location of the subsolar point on Mars. The Martian
subsolar point represents the interception of the Martian surface with a
vector drawn from the center of Mars to the center of the Sun. For an
observer standing at the point of interception, the Sunwill be directly over-
head. Basedon the information obtained from [9-13], the necessary equations
for calculating the latitude and longitude of the subsolar point have been
developedas provided in the paragraphswhich follow. A moredetailed develop-
ment is provided in [14].

Solar zenith angle is defined as the angle betweenthe normal to a specific
point on Mars and the line-of-sight from the point to the Sun.

50



The Julian day interval from the Epoch (January 1900, 0.5 E.T. ) can be
ca_cuJ__L_ as

d = 365 X + X41 + p - 0.5 + h-- 2--$ (i)

where

X = Y - 1900

Y = calendar year of interest

p = number of days from the beginning of the year to date

h = Greenwich mean time.

The right ascension, so, and the declination, 6 , of the point on the celestial

sphere toward which the axis of rotation of Mar_ is directed are given by

o

6
o

= 21 h ii TM i0s.42 + is.565(Y-1950)

= 54o39'27 '' + 12".60(Y-1950)

(2)

(3)

where

ih = 15 °

im = 15'

i s = 15".

The mean obliquity of the ecliptic, e, is given by

e = 23?452294 - 070130125t - 0700000164t 2 + 07000000503t 3

where t = d/36525.

(4)

*Universal Time (U.T.) is the Greenwich mean time beginning at midnight.

Ephemeris Time (E.T.)is the uniform time system used in computations.

E.T. is not affected by the variable rotation of the Earth, hence it is

ahead of U.T. by a small amount,AT, which is determined by observations

E.T. = U.T. + AT

For the year 1961, AT was 34 seconds. The effect of AT is usually small

and is neglected in the present study.
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The orbit of Mars can be defined by six elements:

(I) The inclination of the orbit to the ecliptic
(2) The longitude of the ascending node of the orbit on the ecliptic
(3) The longitude of the perihelion
(4) The true anomaly
(5) The eccentricity
(6) The true orbital longitude of the planet.

Theseelements are referred to the meanequinox and ecliptic of date.

The inclination of the orbit to the ecliptic, as corrected by Ross, is

i = l°51'01".20 - 2".430t + 0".0454t 2, (5)

The longitude of the ascending nodeof the orbit on the ecliptic, measured
from the equinox, is

= 48°47'11".19 + 2775".57t - 0".O05t2 - 0".0192t_ (6)

The longitude of the perihelion, measuredfrom the equinox along the ecliptic
to the nodeand then along the orbit from node to perihelion, is given by

-- 334°13'05".53 + 6626".73t + 0".4675t 2 - 0".0043t 3 (7)

The eccentricity is given by
2

e = 0.09331290+ 0.000092064t+ 0.000000077t . (8)

The true anomaly, F, is given as

(2 1 3_ 12 133F = M + e - _ e sin (M) + _ e sin (2M) + _-_ e sin (3M) (9)

where the mean anomaly, M, is

M = 319°.529425 + 0°.524020766d + 0°.000013553D 2 + 0 °.000000025D3 (i0)

with

D = d/lO000.

Although equation (9) is a series approximation, the accuracy obtainable by

using the first four terms is quite sufficient for the present study. The

orbital longitude of the planet is

m

L = F + m. (ii)

Figures i and 2 are provided to indicate the location of the subsolar

point with respect to various astronomical quantities. In Figure i, the

subsolar point has been located with respect to the vernal equinox. In Figure

2, the quantities required to calculate the planetographic longitude and

latitude of the subsolar point are shown.
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! = Inclination of the equator
to the orbit.

Ls = Planetocentric longitude
of the Sun.

Ds = Latitude of the subsolar point.

As = Planetocentric right ascension
of the Sun.

NORMAL TO ORBITAL PLANE

AXIS

PLANE OF
ORBIT

VERNAL

EQUINOX

k s

SUBSOLAR
POINT

RADIUS
VECTOR
TO SUN

MERIDIAN OF
SUBSOLAR POINT

EQUATOR
OF PLANET

Figure I. LOCATION OF SUBSOLAR POINT ON THE PLANET MARS
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A = North Pole of rotation of Mars.

N = North Celestial Pole.

S = Heliocentric position of the planet.

i = Inclination of the orbit to the ecliptic.

T = First point of Aries.

I = Inclination of the equator to the orbit.
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From the triangle PQT in Figure 2, the angles x, y, and z may be de-
termined as follows:

z = arc cos(cos c sin _ cos _ - cos _ sin _ ) (12)
o o

x = arc cos[(-cos _ cos _ cos _ - sin _ sin _ )/sin z] (13)
o o

y = arc cos[(cos g sin _ sin _ + cos _ cos _ )/sin z]. (14)
o o

From the triangle PQR, in which the angles are I, 180+(i-x) and 90+

(_o-y), the angle I and the arcs & and _ are given by

I = arc cos [cos(x-i)sin(Y-6o)+Sin(x-i)cos(Y-6o)COS z] (15)

= arc cos{[sin(x-i)sin(Y-6o)-COS(X-i)cos(Y-6o)CO s z]/sin I} (16)

& = arc cos{[-cos(x-i)cos(Y-8o)+Sin(x-i)sin(Y-6o)CO s z]/sin I} (17)

Planetocentric longitude of the Sun, Ls, measured in the plane of the
orbit of Mars from vernal equinox, is

L = L - (_ + _ ). (18)
s

The latitude of the subsolar point, b , equals the declination of the

Sun, D . This quantity, along with the pla_etocentric right ascension of the

Sun, A s , can be calculated from the right spherical triangle formed by L ,

Ds, an_ A in Figure 1 as follows: ss

D = arc sin (sin L sin I)
s s

= b (19)
s

A = arc cos (cos L /cos D )

s arc sin (sin LSs cos l_cos Ds ), (20)

The Martian hour angle, V, of the vernal equinox of Mars measured westward

from the prime meridian in the adopted system of elements (with reference to

the Epoch of January 15, 1909 GMAT*) for any Earth date is

V = 145°.845 + 350°.891962(d - 2418322), (21)

The longitude of the subsolar point is then given by

£s = V - A , (22)s

After calculating the longitude and latitude of the subsolar point, the

cosine of the zenith angle, B, of the Sun with respect to a point on the

Martian surface of planetographic longitude £ and latitude b is calculated
as

cos Z = cos b cos(bs)COS £ coS(ks) + sin b sin(bs)

+ cos b cos(bs) sin _ sin (£) (23)
s

Greenwich Mean Astronomical Time (GMAT) is Greenwich mean time beginning at

Noon. It was used before i January 1925.
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Then, the shape factor between a specific point on the Martian surface and the

Sun can be shown to be [15]:

Fms -- cos Z CRslr )2 U(cos Z) (24)

where

R = radius of the Sun
s

r = radial distance between the Sun and Mars at

a given time

i + e cos F

a = mean distance between Mars and the Sun

U(cos Z) = unit step function.

B. Development of the Heat Transfer Equations

Mars receives its energy almost entirely from the Sun. Part of the

incident radiation is reflected and the rest absorbed. Part of the absorbed

energy is conducted into the deeper layers and stored as thermal energy, the

rest is lost to space in the form of emitted radiation. In the present

analysis, Mars is assumed to consist of an inner homogeneous sphere covered

by a thin coating (of thickness D I) of a material with a low thermal conductivity.

The atmosphere is not included in the model. It has been assumed that no

significant temperature variations occur within the inner sphere below a

certain depth, D2, except for the case of internal heat flow. Denoting the

top-layer temperatures with a subscript "i" and the inner-layer temperatures

with a subscript "2", the governing heat transfer equations in spherical co-

ordinates are

and

32TI 2 _TI 1 _TI

_R 2 R _R a 1 _'r

_2T2 2 _T2 1 _T2

3R 2 R DR a2 _T

CRm-D I < R < Rm) (25)

<-"<-- (26)

Equations (25) and (26) are based on the assumption that the angular tem-

perature variations are negligible. The corresponding initial conditions and

boundary conditions are

T I = TI(R)

T 2 = T2(R )

Rm D I _< R_< Rm) @ • = 0 (27)

(R- (DI+D2)<--R <--Rm- DI> @ _ =0m (28)
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TI : TI •
4-1-1 4 _,i_

with j = 0,1...L

T2,i+l, j = T2,i, j

a I At
+--

. . 2 + Tl,i,j_ 1

a2AT

+ (AR2) 2 (T2'i'j+l + T2,i,j_ 1

(34)

(35)

with j = 0,1,...M

and

= TI( j ) ..TI,O,j (j = 0,I,. L)

T2,0, j = T2(j)

TI,I,_I = Tl,i,+l

(j = O,I,...M)

oARI [ 4
- 2 _ _ TI,i, 0

Tl,i, L = T2,i, 0

= i T alK2AR2 - 2a2K2ARI A_2]Tl,i, L+ I alK2 AR2+a2KIARI l,i,L

ARI ii
+ 2a2 K2 ARI A_2 T2'i'l (alK2AR2 - a2KIARI)TI'i'L-

T2,i,M+ 1 = T2,i,M_ 1

(36)

(37)

(38)

(39)

(40)

T!

+ 2 AR 2 qc/K2, (41)

For a given set of reasonable initial conditions, the preceding finite

difference equations can be solved to yield surface and subsurface temperatures.

Theoretically, any set of initial conditions will sufficejbut if unrealistic

initial conditions are assumed, considerable computation time is required for

the solution to converge to the right values. Therefore, an intelligent guess

for the initial temperatures is desirable. When the temperature profiles for

two or three diurnal cycles show little or no change, a solution has been

reached.

In problems involving numerical solutions, the question of stability

arises. Because of the nonlinear boundary condition at the Martian surface as
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and

_TI a
(_ r 4 4)- -_ F T GR=R

_R KI s ms s m
(29)

T1 = T2

_TI _T2
KI _R --K2 _R

@R--Rm -DI (3O)

_T 2 ,,

- K2 _--R- -- qc @ R = Rm - (DI+D2) (31)

where

T = Martian temperature

R = radial distance

R = radius of Mars
m

= time

a = thermal diffusivity

o = qtefan-Boltzmann constant

T = effective temperature of the Sun

K s = thermal conductivity

e = emissivity of the Martian surface

as = solar absorptivity of the Martian surface

" = flow of heat from the interior of the planet.qc

Since R is very large in the present study, equations (25) and (26) may be

simplified to:

and

_2TI 1 _T

_R 2 a I _

82'2_
_ i _T2

8R 2 a 2 _T

(R m - D I < R <--Rm) (32)

(Rm-(DI+D2) _ R _ Rm - DI), (33)

A finite difference approach has been chosen for solving the heat transfer

equations. If the subscripts "i" and "j" refer to time and space, respectively,

equations (27) through (33) can be expressed in finite difference form

as follows:
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indicated by equation (38), the standard criteria for stability, used in

_L==t ......... , °_ -_ =pp14r_hlp_ For the current problem°ordinary _ ..... _.._- p_1°m=

based on [16], the following criteria was established for stability:

alA_ [i AR 1 e o T31;i,o 1

2 I + KI

< 0.5, tl.o_

III. DISCUSSION OF RESULTS

The subsolar point calculations and the finite difference equations have

been incorporated into a digital computer program. The program is capable of

predicting the Martian surface and subsurface temperatures as a function of

Earth time.

The predictions of the latitude of the subsolar point on Mars were made

for specific dates on which comparison with published values of latitude

[4 and 7] was possible. As indicated in Table i, the predicted values of the

subsolar point latitudes generally agree with the published values. The

published subsolar point latitudes are not given for a specific hour (Earth

time), but instead for a time period of two or more days. The predicted

latitudes, however, are given for a specific hour, as indicated in the table.

In addition, the subsolar point latitudes published by Opik in [4] appear to

have been rounded off to the nearest degree. These facts explain the

differences between the published and predicted values. Since no published

values of Martian subsolar point longitude were found, a comparison in terms

of longitude could not be made.

Table i. LATITUDE OF SUBSOLAR POINT OF MARS

REFER- DATE OF PUBLISHED DATE AND TIME _REDICTED

ENCE PUBLISHED DATA LATITUDE OF PREDICTION LATITUDE

7 8?2 + 0.5

4

4

July 20-24, 1954

November 21-22, 1958

December 7-8, 1958

_12 °

_9 °

1200 GMT

July 22, 1954

1200 GMT

November 22, 195_

1200 GMT

December 8, 1958

'8?24

-12747

-9o43

Information concerning the thermophysical properties of the Martian

surface is essential to the prediction of the surface temperature. Thermo-

physical property data are summarized in Table 2 for three materials which

are considered probable constituents of the Martian surface [17]. As indicated

in this table, the property values for powdery limonite and goethite are

similar. For solid basalt, the property values for density and specific
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heat resemble those values for the other two materials. The thermal conduc-
tivity and thermal inertia parameter of basalt, however, are quite different
from their counterparts. Therefore, since powdery limonite and goethite
display such similar properties only the former along with solid basalt were
used in the Present study.

Table 2. THERMOPHYSICALPROPERTIESOFTHEMARTIANSURFACE

THERMAL SPECIFIC THERMALINERTIA
MATERIAL CONDUCTIVITY HEAT DENSITY PARAMETER

Basalt
(solid)

Limonite
(powdery)

Goethite

K

<cal/cm-sec-°K)

0.0052

O.20xlO-4

0.33xi0-4

c
P o

(cal/gm- K)

0.185

0.15

P
_gm/cm3)

2.95

2.0

0.173 2.7

fpc K_-1/2

f\2 p jl/20K/ca_
_m sec

18.80

409.0

255.0

The Martian surface temperature-time histories observed by Sinton and

Strong [i] and Gifford [2] are summarized in Table 3. Sinton and Strong's

temperature data were selected for comparison wizh the predicted temperatures

because such data appeared to be better defined with regard to location and

time period. The darklands and brightlands were both assumed to have an

emissivity of 0.95. The albedo was assumed to be 0.17 for the darklands and

0.34 for the brightlands. Two types of surfaces were selected for the _tudy

of the diurnal temperature variations. The first type consists of a one-layer,

homogeneous model of solid basalt and the second consists of a thin layer of

powdery limonite over a homogeneous layer of solid basalt. To determine the

effect of layer depth on the surface temperature prediction, two different

limonite layer thicknesses (3.048 and 30.48 cm) were considered. The Martian

surface temperature-time histories, which were predicted with these surface

models for the latitude and time of the observations from [i], are presented

in Figures 3 through 6. Observed temperature values of Sinton and Strong

also are presented in these figures.

For the darklands, as indicated by curve A in Figures 3 and 4, the

predicted diurnal temperatures based on the one-layer model are generally

lower than those observed. For the two-layer model of the darklands (curves

B and C in Figures 3 and 4), the predicted daylight temperatures are generally
o

higher (~25 K) than the corresponding observed values. The two-layer model

with the thicker limonite layer produced lower nocturnal temperatures than

the model with the thinner limonite layer. Also, the predicted temperature

profiles during daylight hours for the former lag behind the corresponding

profiles for the latter. In general, the two-layer darklands model of

limonite over basalt produced higher daylight and lower nocturnal temperatures

than produced by the one-layer basalt model.
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For the brightlands, curves A of Figures 5 and 6 indicate that the one-

layer model produced daylight temperature profiles which are, in general,

lower than the corresponding observed profiles. The predicted daylight tem-

peratures, based on the two-layer model (curves B and C of Figures 5 and 6),

appear in good agreement with the observed temperatures. As was the case with

the darklands, the brightlands model with thicker limonite layer produced tem-

perature profiles that are lower at night, and during the day lag behind the

corresponding profiles generated by the model with the thinner limonite layer.

The two-layer brightlands model of limonite over basalt produced lower

temperatures at night and higher temperatures during the day than produced by

the one-layer basalt model. The two-layer model with the thinner limonite

layer produced daylight temperature profiles which are in closest agreement

with the observed profiles for the brightlands.

For both the brightlands and darklands, the two-layer model generally

proved more satisfactory. Thus, this model appears most suitable for esta-

blishing the effect of the Martian atmosphere on the surface temperature.

Although no nocturnal temperature observations are available, extra-

polation of the temperature observations during the morning indicates that

the Martian nocturnal surface temperature should be ~200°K near the equator.

This is 40 to 50°K above the nocturnal temperatures predicted by the two-

layer model for either the brightlands or darklands. This temperature difference

indicates that the Martian atmosphere has a strong "greenhouse" effect on the

Martian nocturnal temperature. As already noted, based on the two-layer model,

the predicted daylight temperatures for the darklands were ~25°K above the

observed, while, for the brightlands, good agreement between observation and

prediction was obtained. Based on an understanding of the underlying thermo-

dynamic considerations, these results would indicate that the atmospheric

effects on the surface temperatures are not as strong during the day as during

the night. In addition, the atmosphere possibly has a stronger influence on

the temperature of the darklands than the brightlands.

IV. CONCLUSIONS

The feasibility of an analytical model for locating the Martian subsolar

point and predicting the temperature-time history of the Martian surface with

reasonable accuracy in terms of Earth time has been demonstrated. The current

model can accurately locate the subsolar point and can produce reasonable

diurnal temperature predictions based on the two-layer concept. During the

Martian night, using the two-layer model, the predicted temperatures appear

considerably lower than the actual values. Atmospheric effects appears to

be the cause for such a difference.

The present analytical model, modified to take into account atmospheric

effects, should be capable of predicting the Martian surface temperature-time

histories with a significant improvement in accuracy. Such a modified analytical

model could then be used, in a manner similar to that described in [18], to

predict the thermal environment which a spacecraft on or near the Martian

surface would experience.
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THEMSFCPLANETARYATMOSPHERECOMPUTERPROGRAM

by

John Chambersi and Ed Seelye

SUMMARY 18 8 4',:1

The MSFC Planetary Atmosphere Computer Program contains the exact

equations and most refined techniques necessary to the development of

planetary atmospheric models. All of the atmospheric parameters that

are essential to spacecraft design studies and aerospace operations are

output in tabular form from the surface to an altitude where the planetary

atmosphere may be taken to be the same as interplanetary space. This

program is on file in the MSFC Computation Laboratory.

I. INTRODUCTION

Accuracy and versatility have been emphasized in the development of

the MSFC Planetary Atmosphere Computer Program. Atmospheric pressures

are computed from the exact hydrostatic equation without constant molecular

weight or isothermal temperature assumptions. A high degree of versatility

in the application of the computer program is maintained by inputting all

constants that are descriptive of an individual planet. The program may

be used in the development of an atmospheric model for any planet,

including the earth.

The program, written in the Extended ALGOL programming language for

the Burrough's B-5500 computer, will process multiple cases of data with

output on printer and SC 4020 plotter. The printing increment may be

varied at the discretion of the operator.

iComputer Sciences Corp., Huntsville, Alabama.

eComputation Laboratory, MSFC, Huntsville, Alabama.
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Symbol

C s

CF

CV

G

H

J

K

L K

M

MFP

N

ND

P

PSp

PS M

R

R*

Slip

Sltd

TK

II. DEFINITION OF SYMBOLS

Definition

speed of sound

collision frequency

coefficient of viscosity

gray i ty

geopotential height

= dM/dH, molecular weight vertical gradient

Boltzman's constant

= dTK/dH , kinetic temperature lapse rate

= dTM/dH , molecular temperature lapse rate

molecular weight

mean atmospheric free path

Avogadro's number

number density

atmospheric pressure

most probable air-particle speed

mean air-particle speed

radius of planet

universal gas constant

pressure scale height

density scale height

kinetic temperature
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Symbol

Z

0

I_, S

c

7

Subscripts

n

i

J

Definition

molecular temperature

geometric altitude

atmospheric density

Sutherland's constants

effective collision diameter of mean air particle

ratio of specific heats

denotes an input level

denotes a level of geometric altitude

denotes a level of geopotential height

III. COMPUTATIONAL PROCEDURE

This section outlines the computational procedure i used in develop-

ing the computer program and provides the analytical equations.

A. Input Data

i. Kinetic temperature at geopotential height levels.

2. Molecular weight at geopotential height levels.

3. Surface pressure.

1The computational procedure used in the development of the computer

program was taken from R-AERO-IN-5-67, "A Preliminary Summary of the

MSFC Planetary Atmosphere Computer Program," by Don K. Weidner.
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4. Surface kinetic temperature.

5. Surface molecular weight.

6. Surface gravity.

7. Planet radius.

8. Universal gas constant.

9. Sutherland's constant.

i0. Boltzman's constant.

ii. Avogadro's number.

12. Effective collision diameter of mean air particle.

13. Ratio of specific heats.

B. Computations at Geopotential Height Levels

i. Kinetic Temperature Lapse Rates

dTK (TK) n - (TK)n+ I

LK = d-H- = Hn+ I - Hn (I)

where n = input levels in geop. km.

2. Molecular Weight Lapse Rates

dM Mn " Mn+l

J = d-_ = Hn+ I - Hn (2)

where n = input levels in geop. km.

3. Kinetic Temperatures

Kinetic temperatures are computed for each km from 1 to

i000 km geopotential height from the surface temperature (To) and the

computed lapse rate (LK).
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4. Molecular Weight

Molecular weight values are computed for each km from i to

I000 km geopotential height from the surface molecular weight (Mo) and

computed molecular weight lapse rate (J).

5. Molecular Temperatures

Molecular temperatures are computed for each km from 0 to

i000 km geopotential height.

(TK)j M
o (3)

(TM)N : M.
J

. Molecular Temperature Lapse Rate

(TM)j-I - (TM)j

(LM)j-I to j Hj - H.j-i

(4)

j = 1,2,3 ..... 999, 1000

(TM)j-I = (TM)o for first computation.

7. Atmospheric Pressure (see Appendix)

ao 0,
M G
o o

P = P i (rM)j-lJ R*(LM)j-I to jj j-iL  TM)j

where Pj_[ = Po for first computation.

(5)

b. If LM= 0 ,

i-M G - H.i_l) _

ej = Pj-I exp q o o (Hi J
L R* (TM) j

(6)

73



r

C. Computations for Each Km from 0 to i000 Km Geometric Altitude

i. Geometric Altitude

RH.
I

Zi = R - H. (7)
X

2. Atmospheric Pressure

Using pressure values (Pj) computed at geopotential height

levels by equations (5) and (6), atmospheric pressures are interpolated

logarithmically for each kilometer of geometric altitude and denoted as

(P)i"

3. Kinetic Temperature

Using kinetic temperatures (T) computed at geopotential
K j

height levels, kinetic temperatures are interpolated for each km of

geometric altitude and denoted as (TK) i.

4. Molecular Weight

Molecular weight values are similarly inter,_olated for each

km of geometric altitude and denoted by M i.

5. Molecular Temperature

(TK) i Mo

(TM) i = M. (8)
i

6. Atmospheric Density

M P.
O i

Pi = R* (TM) i (9)

• Grav i ty

G. = G 1 R J
l o LR + _z) i

(10)
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8. Pressure Scale Height

SHp =

R* (TM) i

M G.
O i

(Ii)

9. Density Scale Height

SH d =

i +--

(S e)i

R _

M G. (d_/dZ)i
O 1

(12)

where

(dTM/dZ)i =

(TM)i-I " (TM)i+I

Zi+ 1 - Zi_ 1

(13)

i0. Number Density

(ND) i

M N P.
O 1

R* M i (_) i

(14)

ii. Most Probable Air-Particle Speed

_- R* ]z/e.PSp = _2 W (TM) i
O

(15)

12. Mean Air-Particle Speed

_i/2

iPSM = _O (TM) i
(16)
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13. Atmospheric Mean Free Path

(MFP) i

R* (M) i (TM) i

_-_ N oe M (P).
O i

(17)

14. Collision Frequency

(CF) . =
l

(PSM) i

(MFP) i
(18)

15. Speed of Sound

I R* ]i/2(Cs) i = 7 _o (TM) i "
(19)

16. Coefficient of Viscosity

(TK) _/2

(CV) i = (TK) i + S
(20)

IV. PROGRAM DESCRIPTION

After the input data are read into the program, they are printed

out in such a form that it may be checked for possible key punch

errors. Once the data are printed, the lapse rates of kinetic tem-

perature and molecular weight are computed from the first two end

points of kinetic temperature and molecular weight. In the atmospheric

layer described by the lapse rates just calculated, the various atmos-

pheric parameters are computed at the geopotential height increments
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specified in the input data. Once the top of this atmospheric layer

is reached, lapse rates of kinetic temperature and molecular weight are

calculated for the next higher layer, and the various parameters are

computed in that layer. This process continues until the top of the

atmosphere, as specified by the last end point of kinetic temperature

and molecular weight, is reached. When this occurs, the results are

printed in increments specified in the input data set.

After the atmospheric parameters at geopotential height levels are

printed, values of kinetic temperature, molecular weight and the natural

logarithm of pressure are interpolated for geometric altitude from their

corresponding values at geopotential heights. The remaining atmospheric

parameters are calculated from these interpolated pressure, kinetic tem-
perature, and molecular weight values.

After the atmospheric parameters at geometric altitude increments

are calculated to the top of the atmosphere, they are printed in the

specified altitude increments.

At this point one case of data has been processed. If more cases

of data are to be processed, then the entire calculation and printing

procedure begins again at the start of the program until all cases of

data have been processed.

V. PROGRAM FLOW DIAGRAM

The following generalized diagram depicts the order in which the

program computes and prints the various atmospheric parameters.
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MARTIAN ATMOSPHERIC MODELS

by

Don K. Weidner

Aerospace Environment Division

Aero-Astrodynamics Laboratory

George C. Marshall Space Flight Center

Huntsville, Alabama _

N68- 18842
SUMMARY -"

This paper presents a mean model of the Martian atmosphere and an

envelope of extreme atmospheric density that have been developed for

use in the design of spacecraft and planning of future Mars missions.

The models are based upon the results of various theoretical studies and

available literature.

I. INTRODUCTION

A model of the mean Martian atmosphere and an envelope which repre-

sents theextreme variability of the Martian atmospheric density have

been developed for the design of spacecraft and planning of future Mars

missions. In developing this model and extreme envelope, an extensive

literature search was made for information related to the Mars atmosphere,

and detailed parametric studies were conducted to establish the sensitivity

of atmospheric density computations to the various input parameters such

as atmospheric temperature and molecular weight and surface pressure.

Additional studies were made concerning (I) the various interpretations

of Mariner IV data, (2) the diffusion and possible escape of the Martian

exospheric constituents, (3) the relationship of temperature and exospheric

constituent distribution, (4) the probability of space plasma and

Martian exospheric mixing and (5) the dependency of exospheric temperature

on solar flux and sunspot cycle.

II. BASIC DATA

Results of these studies and information obtained from the literature

search were used to idealize the temperature and molecular weight, versus

geopotential height, profiles illustrated in figures I and 2, respectively.

81



Geopotentiol Height (kin)

t000

800

600

400

200

0

I I
..... Profile O

Profile E--

Profile F
I

; !1

;//

0 200 400 600 800 1000

Temperature (OK)

Figure I. Idealized Martian Atmospheric Temperature Profiles
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Figure 2. Idealized Martian Atmospheric Molecular Weight Profiles
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The lower atmospheric temperatures are very similar to those of Fjeldbo,

et al. [I] and Johnson [2] and are characteristic of an F2 type ionospheric

layer. This favoritism toward the F 2 type over Chamberlain's [3] E type
ionospheric layer is due to the unreasonably high effective recombination

coefficient necessary for the E type. However, information concering

the dissociative and recombination rates of the Martian atmospheric

constituents is so limited that any concept of the Martian ionosphere

must be considered speculative.

The Mariner IV occultation experiment and spectroscopic measurements

have indicated the Martian atmosphere to be composed almost entirely of

carbon dioxide. For the three models of this report, the composition

has been taken to be I00 percent C02, 75 percent CO 2 and 25 percent N2,

and 48.8 percent CO 2 and 51.2 percent N 2 so that the extreme range of

variability would be defined. A range of surface pressure values was

likewise taken so that it would be representative of the total pressure

variability.

III. ATMOSPHERIC MODELS

The atmospheric models given in this paper were generated by utili-

zation of the MSFC Planetary AtmDsphere Computer Program. This program,

which is on file in the MSFC Computation Laboratory, contains the exact

equations and most refined techniques necessary for the development of

planetary atmospheric models.

A detailed parametric study revealed that the envelope of extreme

density is greatest when the input parameters are combined in the

following manner:

Mean Model

I. Temperature - Profile E (Figure I)

2. Molecular weight - Profile B (Figure 2)

3. Surface pressure - 8.0 mb

Extreme Envelope

(Minimum model)

I. Temperature - Profile D (Figure I)

2. Molecular weight - Profile A (Figure 2)

3. Surface pressure - 4.0 mb
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(Maximummodel)

I. Temperature - Profile F (Figure I)

2. Molecular weight - Profile C (Figure 2)

3. Surface pressure - I0.0 mb

Atmospheric density profiles derived from these three sets of input
data are illustrated in Figure 3. The meandensity profile is thought
to be representative of the meanMartian atmosphere, and it is antici-
pated that there is a 99 percent probability that any actual Martian
atmospheric density profile would fall within the envelope defined by
the maximumand minimumprofiles.
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0
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=

Meon,o e,-Moximum Model
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Density (gin cm -3)

Figure 3. Martian Atmospheric Density

Because of a lack of information concerning chemical kinetics in the

upper Martian atmosphere, a model of the atmospheric constituent distri-

bution has not been established. However, using the mean number density

profile and the idealized mean molecular weight profile, a plausible

constituent distribution may be obtained as illustrated in Figure 4.
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Figure 4. Martian Atmospheric Constituent Distribution

This distribution agrees very well with the models of Donahue [4] and

Smith and Beutler [5] from 0 to 300 km altitude. The total number density

also agrees with Don_hue's model, but decreases much more rapidly than

the model of Smith and Beutler above i00 km altitude.

IV. CONCLUSIONS

The models presented in this report must be classified as semi-

empirical as they are based upon idealized temperature and molecular

weight profiles. They are, however, thought to be the most accurate

representations that can be established at this time.

More information concerning the Mars atmosphere is needed before

highly reliable models may be established. Of particular interest

would be information related to the Martian atmospheric processes, time

constants for C02 sublimation, and dissociative and recombination rates

for the Martian atmospheric constituents. Much of this information

could be obtained from Martian atmospheric simulation experiments.
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Based on the Mariner IV ionospheric experiment data, the base of

the thermosphere may be as low as 105 km. The thermal gradient is

expected to range in value from0.5 to 3.0 °K/km during periods of low

to high solar activity, respectively. The MSFC maximum density envelope

compares favorably with the maximum density profile from the VM3 exten-

sion, the MSFC density at I000 km being less than one order of magnitude

below the VM3 extended model value. The MSFC mean density profile com-

pares favorably with the older GE Voyager reference atmosphere. The MSFC

mean density profile and associated confidence envelopes were found to

be consistent with most models presently available.

Estimates of the variations of the atmospheric structure as a func-

tion of solar activity were prepared and indicate:

(a) The density at altitudes of about 1,000 kilometers is

likely to exhibit a diurnal (day-night) variation of an

order of magnitude.

(b) The atmospheric density at 1,000 kilometers during a

period of high solar activity is likely to be three orders

of magnitude greater than it is during a period of low

solar activity.

(c) Solar cyclic variations of the atmosphere's density at

1,000 kilometers of five and six orders of magnitude

are expected to result more from uncertainties in the

models than from probable variations of the atmosphere

itself.

(d) The MSFC mean-to-maximum density profiles appear reason-

able for periods of high solar activity.

The authors are associated with the General Electric Corp., Missile

and Space Division, Valley Forge, Pa. This paper was prepared for

MSFC under contract number NAS8-22603.
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(e) The MSFCmean-to-minimumdensity profiles appear adequate
to define the density likely to be encountered during a
period of moderate to low solar activity.

I. INTRODUCTION

The orbital lifetime of a body placed in orbit around Mars can be
calculated by considering the atmospheric density likely to be exper-
ienced at orbital altitudes. Defining the density profile is somewhat
of a problem, however, since it can be expected that the structure of
the outer atmosphere will be greatly influenced by solar variations in
much the samemanner as the Earth's atmosphere. It is expected that
the density at orbital altitudes will be greatest during periods of
high solar activity, as is the case in the Earth's upper atmosphere.
Thus, an estimate of the probable solar cyclic related variation of the
upper atmosphere of Mars can be of assistance in reducing the uncertainty
range of density variation likely to be experienced in any given year.
In addition, such an estimate would provide a meansof relating derived
density profiles from fly-by experiments madeat different periods of
time.

This paper (i) provides a brief discussion of the probable time-
space variations of the outer atmosphere of Mars, (2) presents several
models of the outer atmospherewhich have been developed, and (3)
develops, by empirical means, a method of reducing density uncertainties
associated with a given model by allowing for solar cyclic variations.

II. PREDICTEDSOLARFLUX

Before discussing the probable solar cyclic variations of the upper
atmosphere of Mars, the probable variation of solar activity should be
estimated. Of particular interest is the time variation of the 10.7 cm
r_diation flux for the years 1964, 1969, 1971, 1973, and 1975.

The predicted meanand extreme values of the 10.7 cm flux [3],
together with the observed meanand extreme values for 1964, are given
in table I.

From the values given in table I, it is seen that the Mariner IV
fly-by occurred during a period of low solar activity, while the Mars
'69 fly-by should occur during a period of high solar activity. Con-
sequently, if the upper atmosphere of Mars behaves in a manner similar
to the Earth's atmosphere, then the derived densities from the Mars '69
fly-by experiments should be considerably greater than those derived
from the Mariner IV experiments.
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TABLEI

Predicted Values of the 10.7 cm Flux

(in units of i0 -e2 watts/cme)

Year

1964

1969

1971

1973

1975

Mea_____n

7O

205 - 225

150 - 160

Ii0 - 135

70 - 80

Extreme

75 - 85

280 - 310

205 - 225

140 - 175

85 - ii0

A period of relatively low solar activity is expected in 1973 with

a minimum of activity occurring in 1976. Thus, it is likely that the

atmospheric density encountered at orbital altitudes by the Voyager

spacecraft in 1973 will be closer to that derived from the Mariner IV

experiments than to that derived from the Mars '69 experiments. Signi-

ficantly, the atmospheric densities derived from the Mars '69 experi-

ments should provide a close estimate of the maximum density likely to

be encountered in the upper atmosphere of Mars.

III. EXOSPHERE

A. Temperature Variation

The empirical relation between the exospheric temperature and solar

activity [I] was found to be consistent with the temperature values

derived from the Mariner IV data [12]. On the basis of this agreement,

the empirical relation appears acceptable at this time. Data from the

Mars '69 fly-by may provide an opportunity to check the relative validity

of the relation for periods of high solar activity. For the present, it

is assumed that the empirical relation will provide a reasonable estimate

of the exospheric temperature variation as a function of solar activity.
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The temperature minima (Tn) are taken to occur at 0400 while the
maxima (Tx) occur at 1400 for any value of the 10.7 cm solar flux (S).
Theminima and maximaare obtained by the following formulation:

Tn = 1.94S + 275

Tx = 3.05S + 372,

where Tn and Tx are in degrees Kelvin, and the 10.7 cm solar flux is in
units of i0 -ee watts/me-cps. The values of exospheric temperatures as a
function of solar activity are given in Table II.

TABLEII

Martian Exospheric Temperature (°K) as a Function of
the 10.7 cm Solar Flux (S)

T(°K)

Minima

Maxima

Solar Flux (S)

70 i00 150 200 250

411 469 566 663 760

586 677 829 982 1134

B. Altitude of Exosphere Base

The base of the exosphere (i.e., top of the thermosphere) was

initially proposed as a variable, dependent on the thermosphere thermal

gradient and the exosphere temperature. More recent evaluations indicate

that, for all practical purposes, the altitude of the base of the exos-

phere may be relatively constant in time, although intimately related to

the selected values of the thermosphere thermal gradient. The Harris

and Priester [5] temperature values at 420 kilometers are compared with

the temperature value at 2000 kilometers, well within the Earth's

exosphere, in Table III. It thus appears that the base of the exosphere

is relatively insensitive to variations in solar activity. The base alti-

tude of the Martian exosphere is intuitively expected to be lower than

it is in the Earth's atmosphere. The upper atmosphere models presented

by Hess and Pounder [6] would suggest an exosphere base altitude of

250 km. Similarly, the model of Smith and Beutler [9] would suggest an

exosphere base altitude of about 340 kilometers.
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TABLEIII

Comparison of the Harris and Priester Model Temperatures
at 2000 km and 420 km

Solar Flux (S)

T(°K) 250 i00 70

Minima
2000 km

420 km

Maxima
2000 km

420 km

1392

1383

2121

2068

200 150

1163 944

1155 938

1768 1409

1739 1394

737

732

1046

1039

612

609

827

822

The empirically derived base altitude of the exosphere will be dis-
cussed in Section IV since, as mentioned above, it is expected to be
related to the selected values of the thermosphere thermal gradient.

IV. THERMOSPHERE

A. Altitude of Base

The atmosphere of Mars at high altitudes is expected to exhibit a
region of temperature increase because of recombination heating. The
altitude at which this heat source occurs has recently been estimated at
about 90 kilometers, Gross, et al. [4], I00 km, Donahue [2], and < 140 km,
Chamberlain and McElroy [i]. Based on our own evaluations of the Mariner IV
data, Vachon [12], the base of the thermosphere was evaluated at about
103 kilometers. For our purposes, the base of the thermosphere is taken
as being at an altitude of I00 kilometers. To simplify further calcula-
tions, it is assumedthat conditions at I00 kilometers remain constant in
time and space. Thus, we introduce a fixed boundary condition at I00 km,
which contains all of the inherent limitations contained in the same
assumption made in regard to the Earth's upper atmosphere; e.g., the
density at the boundary a]titude is held constant in time and space,
although it is known to vary substantially. In the Harris and Priester
model [5], it is found that a fixed boundary exists at an altitude of
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120 kilometers. Considering that the Harris and Priester model provides
a reasonable fit to the observed conditions at altitudes in excess of
200 kilometers, the assumption of a fixed boundary condition appears
permissible as a meansof developing models of the atmospheric structure
above 200 kilometers for use in orbit decay evaluations.

B. Thermal Gradient

The thermal gradient in the thermosphere would be expected to be
greatest near the base and to diminish with altitude. The magnitude of
the gradient itself is dependent upon the chemical kinetics of the atmos-
phere. Although it is doubtful that one can use the thermal gradients of
the Earth's atmosphere to derive the probable gradients in the Mars
thermosphere, it would be interesting to comparesuch empirically derived
values with those from existing models of the Mars upper atmosphere.

The intensity of solar radiation at the Mars orbital distance is
about half that incident at the Earth's distance. Since the thermosphere
is a byproduct of photodissociation or recombination, it will be assumed
that the Mars thermosphere thermal gradients are equal to half the value
of the Earth's thermosphere thermal gradients. This is an admittedly
crude assumption for it totally neglects the differences in the chemical
kinetics of the two atmospheres. The thermal gradients for three selected
altitude intervals, as well as the equivalent over the three intervals,
are given in Table IV for the Earth, and in Table V for Mars as a func-
tion of solar activity.

The values presented in Table V show that the estimates of the
altitude variation of the Mars thermal gradients, based on values for
the Earth's atmosphere, decrease muchmore rapidly than those used in
Mars atmosphere models. However, based on our own evaluation of the
Mariner IV data, Vachon [12], the thermal gradient over the altitude
range of 105 to 138 kilometers, during a period of low solar activity,
was found to lie within the limits of I ± 0.5 °K/km.

From the viewpoint of establishing empirical relationships, it would
appear more prudent at this time to use only the integrated gradient
values between 400 and I00 kilometers. Since the integrated thermal
gradients obtained from evaluations of the chemical kinetics, Smith and
Beutler [9], are in reasonable agreement with the empirically derived
values, the latter may then provide a relatively reasonable meansof
relating variations of the thermal gradients as a function of solar
activity.
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TABLE IV

Altitude Variation of the Thermal Gradient (°K/km)

the Earth's Thermosphere as a Function of Solar Activity

Altitude Solar Flux (S)

(km) 250 200 150 i00 70

220 - 120

Minima

Maxima

320- 220

Minima

Maxima

420 - 320

Minima

Maxima

420 - 120

Minima

Maxima

8.72

12.65

1.32

3.52

0.24

0.96

3.42

5.70

6.83

10.58

0.98

2.64

0.19

0.65

2.67

4.61

4.94

8.28

0.74

1.76

0.15

O. 35

1.94

3.46

3.13

5.70

0.53

0.97

0.Ii

0.17

1.26

2.28

2.06

3.99

0.40

0.58

0.08

0.10

0.85

1.56
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TABLEV

Altitude Variation of the Thermal Gradient (°K/km)
the Martian Thermosphereas a Function of Solar Activity

Solar Flux (S)

Smith/ Weidner/
Altitude Beutler Hasseltine

(km) 250 200 150 i00 70 [9] [15]

200 - i00

Minima

Maxima

300 - 200

Minima

Maxima

400 - 300

Minima

Maxima

400 - I00

Minima

Maxima

4.36

6.33

0.66

1.76

0.12

0.48

i .71

2.85

3.42

5.29

0.49

1.32

0.09

0.31

1.33

2.30

2.47

4.14

0.37

0.88

0.07

0.17

).97

L.73

1.56

2.85

0.27

0.49

0.06

0.09

0.63

1.14

1.03

2.00

0.20

0.29

0.04

0.05

0.42

0.78

2.40

2.40

1.06

I .06

0.28

0.28

1.27

1.27

I .02

1.02

1.36

1.36

1.63

1.63

Gradient value given is for an altitude interval of 200-150 km.
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C. Altitude of Top of Thermosphere

As mentioned in section III, the altitude of the top of the thermo-
sphere (i.e., base of the exosphere) is expected to be relatively con-
stant. However, if one uses the integrated thermal gradients of section
_v, _Ua=_LL_w_, _LL_ =_O_,=_ _=_,_=_=ture ---_.... section ..... 'V_U_ U_ _ _IIU

a fixed boundary at the base of the thermosphere, then it is found that

the altitude of the base of the exosphere must vary. Thus, it is found

that either the altitude of the top of the thermosphere must be made

variable or the integrated thermal gradients must be changed to fit the

condition of a fixed base altitude for the exosphere. Since the thermal

gradients are dependent upon the chemical kinetics of the atmosphere,

which were largely ignored, it is felt that modifying the gradient values

would be better than introducing a variable exosphere base altitude.

Using the integrated gradient values from Table V, together with the

exosphere temperature from Table II, the lowest altitude of the exosphere

(460 km) was found to be associated with the highest integrated thermal

gradient (2.85 °K/km), and the highest exosphere temperature (1134 °K).

Since it is doubtful that the exosphere temperature could be this high,

and that the integrated thermal gradient is itself much higher than the

Smith and Beutler [9] value based on evaluation of the chemical kinetics,

it was decided to reject this condition as the basis for scaling. The

next lowest altitude of the exosphere (482 km) was found to be associated

with an integrated thermal gradient of 1.7 °K/km, and an exosphere tem-

perature of 760 °K. The relative agreement between the integrated

gradient of this case and the model of Weidner and Hasseltine [15] was

taken as a favorable aspect, since their model is based in part on an

evaluation of the chemical kinetics. Further, the exosphere temperature

value of 760 °K is now out of accord with most studies of the chemical

kinetics of the Mars upper atmosphere. Although intuitively the top of

the thermosphere is expected to be lower than it is in the Earth's atmos-

phere, for the present it is assumed that the top of the thermosphere on
Mars is at an altitude of 482 kilometers.

The introduction of a fixed altitude for the top of the thermosphere,

with a fixed boundary at i00 kilometers and for the given exospheric

temperatures, requires a change in the integrated thermal gradient values.

The integrated thermal gradient values for a variable exosphere altitude

and for a fixed exosphere altitude are given in table VI.
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TABLEVI

Integrated Thermal Gradients (°K/km) in the
Martian Thermosphereas a Function of Solar Activity

T(°K)

Variable Exosphere
Minima

Maxima

Fixed Exosphere
Minima

Maxima

250

1.71

2.85

1.71

2.69

Solar Flux (S)
200 150

1.33 0.97

2.30 1.73

i. 46 1.20

2.29 1.89

i00

0.63

1.14

0.95
i .49

70

0.42

0.78

0.80

1.26

V. OUTERATMOSPHEREMODELS

Several models of the outer atmosphere of Mars have been developed

in the past year and used in orbital lifetime and planetary quarantine

studies. The first of these, identified as the VM-3 extension, is an

empirical model intended as an estimate of the maximum density likely

to be encountered at orbital altitudes. The second, identified as the

GE Voyager reference atmosphere, is based on a theoretical model which

represented the mean atmospheric structure consistent with the Mariner

IV fly-by results. The third, identified as the MSFC model, is a semi-

empirical model which provides a preliminary estimate of the mean

density profile and associated confidence envelopes.

A. VM-3 Model Extension

The probable characteristics of the thermosphere and exosphere

of Mars were used in extending the VM-3 model atmosphere, Vachon [12].

Because the main purpose of the model was to provide an estimate of

the maximum density likely at orbital altitudes, the VM-3 model

atmosphere was selected for extension, since it provided the highest

density at altitudes of i00 kilometers.
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__ne_.._!.-3atmosphere density profile was extended as follows:

i. The altitude of the base of the thermosphere was taken as
equal to 103 kilometers.

2. The solar flux index was taken as 250 units.

3. The thermal gradient in the thermosphere was taken as
l°K/km for the night side and 1.5 °K/km for the day side.

4. The exosphere temperature was taken as 760 °K on the night
side and 1134 °K on the day side.

5. The molecular weight was assumedconstant with altitude.
In testing the influence of molecular weight variations, the molecular
weight above 103 kilometers was assumedto decrease by one-half its
value below 103 kilometers. This latter condition resulted in a four-
order-of-magnitude increase in the density at 1,000 kilometers.

6. The density of interplanetary space during high solar
activity was assumedto be on the order of i0 "2_ to i0 "ee gms/cc.

7. To simplify the calculations, the geopotential altitude
concept was used; this resulted in reducing the thermal gradients cited
above.

The density in the thermosphere was calculated by use of the
following formula:

. R

The density in the exosphere was calculated by use of the more common

exponential decay formula:

p = Po exp i(" _Tg°_h - ho]

The density at i000 kilometers during a period of high solar activity

was thus calculated as ranging from a diurnal minimum of 9 x i0 -18 g/co

to a diurnal maximum of 3 x 10 -±5 g/cc. On the basis of the theoretical

studies being performed at JPL, Newburn [8], the maximum density profile
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appeared quite conservative. Indeed, the maximumexosphere tempera-
ture consistent with Gunn's model (of JPL) is 700 °K as compared with

our empirically derived value of 760 to I134°K for periods of high
solar activity.

Thus,the VM-3 model extension, daytime density profile, is expected

to represent what should prove to be a very conservative density profile.

B. GE Voyager Reference Atmosphere

The description of the Martian upper atmosphere recently provided

by Hess and Pounder [6] was used as the basis for a proposed Voyager

Mars reference atmosphere [13]. The reference atmosphere was intended

not as an extreme atmosphere model, but rather as a probable mean.

To provide a complete profile of the atmospheric structure up to

900 kilometers, the upper limit of figure 9 in Hess and Pounder [6], it

was necessary to extrapolate the data downward below i00 kilometers.

The assumptions made in extrapolating the JPL model downward were dis-

cussed with D. Spencer of JPL [i0] and are considered reasonable. The

following approach was used in extrapolating the JPL model downward.

The atmospheric structure between i00 and 900 kilometers is given

in graphical form by Hess and Pounder [6] who provide (a) the number

density of the various constituents, (b) the kinetic temperature up

to 300 kilometers, and (c) the free electron concentration up to about

200 kilometers. The constituent number densities were obtained from

figure 9 of reference 6 (Hess and Pounder) for altitude increments of

50 kilometers up to 300 kilometers, and thereafter at i00 kilometer

intervals. The molecular weight and mass density were then calculated

from the extracted values of number density. These latter values were

in turn replotted and curve-fitted to obtain smooth profiles.

The temperature values were extracted from figure 9 of reference 6

for a number of altitude values required to closely fit the profile
given.

The atmospheric structure below i00 kilometers consistent with

the definition of the structure above i00 kilometers was quickly found

not to fit any of the VM atmosphere models. Thus, in order to obtain

a self-consistent model, it was necessary to extrapolate the atmosphere

downward. The conditions at I00 kilometers obtained from figure 9 of
reference 6 are

T = 150 OK; p = 1.9 x i0-l° g/cc

M = 43 or 44; p = 5.4 x i0 -_ millibars.

98



Assuming the surface temperature to be 275 °K (which corresponds to
the value used in VM-I, 3, 5, 7, and 9) and the troposphere temperature
gradient equal to the adiabatic, then for a C0e rich atmospherewith
M = 44, dT/dZ equals to -5.39 =K/km. The tropopause is assumed to occur

at an altitude where the temperature reaches a value of 150 °K (equal to

the value at i00 km). The tropopause altitude is thus obtained as 23.2

kilometers. Using this temperature profile, extrapolating the pressure

downward yields a surface pressure of 7.5 millibars.

The density values above i00 kilometers selected for this reference

atmosphere are those which correspond to the model developed using an

eddy diffusivity value of 10 -3 kme/sec. This latter value corresponds

to a diffusion time on the order of a few hours. This model was selected

since it contains the higher densities of the two models given.

The vertical structure of this reference atmosphere is provided in

figure i and includes the density values obtained directly from figure 9

of reference 6 (Hess and Pounder). The computer printout and associated

automatic plots for the model are provided in milestone report

VOY-D4-TM-4 by Vachon [13].

Comparing the density at I000 kilometers obtained from this model

(_ 2 x i0"e° g/cc) with that obtained in the VM-3 extension (9 x I0 "18

to 3 x i0-15 g/cc) shows that the VM-3 extension is indeed very conserva-

tive. However, since the reference model is not necessarily intended as
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a meanduring periods of high solar activity, while the VM-3extension
is restricted to that period, comparisons between the two models require
a degree of latitude.

C. MSFCAtmosphereModel

The MSFCmeanmodel and 99 percent confidence envelopes for the
Mars atmosphere, recently prepared by Weidner [4], contain the attractive
feature of having a molecular weight variation with altitude (figure 2)
which does not asymptote at 16 as in models based on the chemical kinetics
of the Mars atmosphere. Although the minimum, mean, and maximumdensity
models (figure 3) are semi-empirical, they appear reasonable at this
time, pending further studies of the chemical kinetics of the upper
atmosphere.

The meanatmosphere parameter values from Weidner [14] and from
the GEVoyager reference atmosphere [13] are compared in table VII.
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TABLE VII

Comparison of Mean Atmosphere Parameter Values at i000 Kilometers

Parameter Weidner GE Reference Atmosphere

Kinetic temperature (°K)

'Pressure (dynes/cm e)

'Density (g/cc)

Molecular weight

914

7.7 x 10 -9

6 x 10-19

5.9

412

4.6 x i0"9

2 x i0 -e°

16
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The comparison of the parameter values indicates that, while the
density values do not differ appreciably, there exists considerable con-
flict in the temperature and molecular weight values. Based on the
theoretical studies of Gunnat JPL,it is unlikely that the kinetic
temperature will exceed 700°K. On the other hand, it is intuitively
unlikely that the molecular weight will asymptote at 16. Future studies
of the chemical kinetics of the upper atmosphere which includes the
probable concentrations of hydrogen and helium maywell resolve this
quandary. For the present, the meandensity model of Weidner [14] is
preferred, since associated with this meandensity model are a family of
density profiles representing various confidence levels which include
the GEreference atmosphere profile.

The maximumdensity given by Weidner [14] for I000 kilometers
(i x i0 -IG g/cc) comparesfavorably with the maximumfrom the VM-3
extension (3 x i0 -Is g/cc). Recalling that the latter was thought to
be quite conservative, the difference between the two values is perhaps
to be expected. In addition, since the VM-3extension totally neglects
variations of molecular weight with altitude, while the MSFCmaximum
density model accounts for such variations, the latter appears to be
reasonable.

From the viewpoint of providing a commonreference atmosphere and
associated extremes, the preliminary models of Weidner [14] should be
utilized. Tabulations of the minimum, mean, and maximumdensity models
were included in milestone report VOY-D4-TM-4,Vachon [13], and are also
available in the recent report by Weidner and Hasseltine [15].

VI. VARIATIONOFATMOSPHERICDENSITY

A. Diurnal Variation

The atmospheric density in the Earth's upper atmosphere at i000
kilometers varies by about one order of magnitude from a minimumat
0400 hours to a maximumat 1400 hours during maximumsolar activity
periods. Although the magnitude of the diurnal variation of density
is about a factor of 3 during periods of low solar activity, occasionally
larger variations are encountered even during these periods.

In regard to the Mars atmosphere, it is likely that diurnal varia-
tions of density of an order of magnitude are likely to be encountered
at orbital altitudes around i000 kilometers. In a previous estimate of
the variation of density on Mars, Vachon [12], diurnal variations of
about two orders of magnitude were suggested as being probable during
periods of high solar activity. However, based on more recent evalua-
tions of the probable density variations as a function of solar activity,

102



which are discussed in the following section, it appears that this
earlier estimate was overly pessimistic. Indeed, from the density
values given in Table IX (presented in section VI-B), it is seen that
the diurnaldensity variation is about one order of magnitude.

B. Solar Cyclic Variations

The range of density values at I000 kilometers given by Weidner
and Hasseltine [15] is expected to reflect the range of variation likely
to be experienced over the full solar cycle. The full range of the
Mars density variations at i000 kilometers is about 3 x l0 s, according
to the models of Weidner and Hasseltine.

To relate the probable distribution of density as a function of
solar activity within this range, the Harris and Priester models of the
Earth's atmosphere [5] are again considered. The range of density
variation at i000 kilometers from a period of low solar activity
(S = 70) to a period of high solar activity (S = 250) is found to be
about three orders of magnitude. The distribution of density at I000
kilometers in models of the terrestrial and Mars atmospheres is given
in table VIII.

TABLEVIII

Distribution of Density at i000 Kilometers in Models of
the Terrestrial and Martian Atmospheres

200 to 250

70 to i00

70 to 250

Meanto
Maximum

Minimumto
Mean

Minimumto
Maximum

Density (g/cc)

3 x 10-18 to 1.3 x i0 "16

2 x i0 "19 to 1.7 x I0"18

2 x i0 -19 to 1.3 x i0 -16

Range

102

5.97 x i0 -19 to 1.4 x I0 -16

5.03 x i0 -me to 5.97 x I0 -19

5.03 x i0 -me to 1.4 x I0 -16

i0 ]-

103

_2-3 x i0 e

10 3

3 x 10 5

Remarks

Priester and

Harris Models

of the Earth's

atmosphere at

i000 km

Weidner and

Hasseltine

models of

Mars atmos-

phere at

i000 km
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From a comparison of the density values and the range of variation
given in table VIII, several possibilities are suggested. First, the
range of density variation in the Mars mean-to-maximummodel agrees
closely with that expected during a period of high solar activity.
Second, the range of density variation in the Mars minimum-to-meanmodel
is muchgreater than would be expected during a period of low solar
activity. Third, the full range of density variation in the Mars atmos-
phere models is almost twice as large as that expected in the Earth's
atmosphere. On the basis of the above comparisons,it would appear
reasonable to assumethe mean-to-maximumdensity models to be repre-
sentative of periods of high solar activity. On the other hand, assum-
ing the minimum-to-meandensity models to be representative of periods
of low solar activity would appear to introduce a greater range of
variation than would be encountered by analogy with the Harris and
Priester models [5].

In order to provide an estimate of the probable variation of the
atmospheric structure as a function of solar activity, the meanatmos-
phere model of Weidner and Hasseltine [15] was modified. The modifica-
tion consisted of altering the thermal structure above i00 kilometers
by substitution of the thermosphere thermal gradient values given in
table VI, together with the exosphere temperature values given in
table II. This rather simple modification provides a meansof esti-
mating the probable variation of the atmosphere as a function of solar
activity for any given model. In the case of the Weidner and Hasseltine
meanmodel, the resulting range of density variation as a function of
solar activity (table IX) was found to closely agree with that obtained
from the Harris and Priester models [5].

TABLEIX

Variation of the Mars Atmospheric Density at 700 Kilometers
as a Function of Solar Activity

Minima

Maxima

Solar Flux (S)
250 200 150 I00 70

7 x 10-18

8 x i0 "17

6.2 x 10-19

8.2 x i0 -Is
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From the values in table IX, it is seen that the density at 700
kilometers during a period of high solar activity is likely to be
almost three orders of magnitude greater than during a period of low
solar activity. At an altitude of i000 kilometers, the calculated
density variations indicate a three-orders-of-magnitude spread over
the _uii solar cycle. The diurnal variation of density seen from
table IX to amount to about one order of magnitude.

Based on the calculated values for the modified Weidner and
Hasseltine meanmodel [15], as well as similar calculations using other
models, it appears unlikely that the density at I000 kilometers will
vary by muchmore than three orders of magnitude over the full solar
cycle. However, since the composition of the upper atmosphere is
uncertain, the range of density variations must be increased to allow
for this uncertainty. As mentioned previously, the Weidner maximum
density profile was in reasonable agreementwith the expected highly
conservative VM-3model extension. Thus, if the uncertainty in the
composition is to produce an increase in the range of density values
at any given altitude, then the range should be increased to include
less dense atmospheres.

MSFC's (Weidner and Hasseltine models) mean-to-maximumdensity
profiles thus provide a reasonable range of density values for periods
of high solar activity. The MSFCmean-to-minimumdensity profiles
would, by the same token, provide a reasonable range of density values
for periods of moderate to low solar activity.

VII. CONCLUSIONS

Based on the Mariner IV ionospheric experiment data, the base of
the thermosphere maybe as low as 105 km. The thermal gradient is
expected to range in value for 0.5° to 3.0°K/km during periods of low
to high solar activity, respectively. TheMSFCmaximumdensity envelope
compares favorably with the maximumdensity profile from the VM3exten-
sion (the MSFCdensity at I000 kms being less than I order of magnitude
below the VM3extended model value). TheMSFCmeandensity profile
compares favorably with the older GEVoyager reference atmosphere. The
MSFCmeandensity value at i000 kms is approximately I order of magni-
tude greater than that obtained from the GEVoyager reference model.
The MSFCmeandensity profile and associated confidence envelopes were
found to be consistent with most models presently available.
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Estimates of the variations of the atmospheric structure as a
function of solar activity indicate:

(a) The density at altitudes of about i000 kilometers is
likely to exhibit a diurnal (day-night) variation of an order of
magnitude.

(b) The atmospheric density at i000 kilometers during a
period of high solar activity is likely to be three orders of magni-
tude greater than it is during a period of low solar activity.

(c) Solar cyclic variations of the atmosphere's density at
I000 kilometers of five and six orders of magnitude are expected to
result more from uncertainties in the models than from probable varia-
tions of the atmosphere itself.

(d) The MSFCmean-to-maximumdensity profiles appear reason-
able for periods of high solar activity.

(e) The MSFCmean-to-minimumdensity profiles appear adequate
to define the density likely to be encountered during a period of
moderate to low solar activity.
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MODEL ATMOSPHERES OF MERCURY

By

Otha H. Vaughan, Jr.

George C. Marshall Space Flight Center

N 6s- 8844
SUMMARY

Atmospheric models for both the sunlit and dark sides of the planet

Mercury based on latest environmental data for this planet have been

developed for engineering use and for preliminary design criteria guide-

lines. The models are considered by the author to be as realistic as

available data will permit; however, as more data are obtained, they

will probably need to be refined.

INTRODUCTION

Although the planet Mercury has not yet been seriously considered

in the United States space exploration program, in view of the informa-

tion obtained from the Ranger, Orbiter, Surveyor, and the Mariner pro-

grams, Mercury will probably become an object of interest as more

progress is made. Any effort at the present time to design a suitable

spacecraft either for flyby missions or for landing on Mercury is

restricted to a set of environmental criteria obtained from earth-based

measurements and observations only. This paper presents the results of

an in-house effort to develop atmospheric models for use in preliminary

design studies for a spacecraft to probe the environment of Mercury.

ASTRONOMICAL AND GEOPHYSICAL DATA

Mercury, the smallest of the major planets, has a diameter of only

4,880 km ± 15 km, according to de Vaucouleurs [31], and is the innermost

planet of the solar system. According to Ray [17], its mean distance

from the sun is 0.3871A.U. (about 57,900,000 km). Mercury's orbit

around the sun has a perihelion of 45,980,000 km and an aphelion of

69,780,000 km, its orbital eccentricity (0.2056) being greater than any

other planet in the solar system excluding that of Pluto. Mercury's

orbital path and location with respect to the sun make this planet very

difficult to observe since at its most favorable elongation it recedes
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only 28 degrees from the sun in the plane of the ecliptic. However,
Mercury has been observed by astronomers for two thousand years, dating
back to at least 265 B.C. Several volumes have been written about the
techniques of observing and obtaining environmental data for the planets
of our solar system. References I, 2, and 3 provide probably the most
comprehensivesource of this type of data. Geophysical and astronomical
data for Mercury are summarized in table I.

DISCUSSION

For a long time, it was generally agreed that Mercury had no atmos-
phere because of the low escape velocity and because it was believed to
be in captured rotation which would cause large temperature extremes
between the sunlit and dark sides of the planet. This hypothesis was
further supported by the apparent absence of any significant diffusion
or reflection of light. The sharply defined appearance of Mercury as it
crosses the face of the sun also suggests that there is little if any
atmosphere. Early estimates for the temperature extremes for this
planet were 690 °K for the sunlit side at the sub-solar point and 5 °K
for the dark side at the anti-solar point, considering that the planet was
not rotating. In 1936, Pettit and Nicholson (see Kuiper [2] and Kiess
[6]) made infrared measurementsover a number of phase angles, obtaining
a temperature at the sub-solar point of 610 °K. Walker in 1961 [22] cal-
culated the meansub-solar temperature to be 621 °K and the dark-side tem-
perature to be 28 °K by assuming that (i) the planet did not rotate, (2)
the interior was in thermal steady state, (3) the specific rate of radio-
active heat production was equal to that of chondritic meteorites (1.33
cal deg'icm'im'l), and (4) the planet was at a meanorbital distance.
Becauseof the orbital eccentricities, the sub-solar temperature as deter-
mined by Pettit (see Kuiper [2]) can be as high as 688°K at perihelion
and 588 °K at aphelion by assuming that the sub-solar temperature is
613 °K when the planet is at its mean distance from the sun.

Evidence for an atmosphere of Mercury has been based mainly on

polarization studies [5,8], spectrographic data [2,9,15,16,13], and

thermal data [14,26,27]. Early polarization studies by Lyot (see Dollfus

[8]) and later by Dollfus [8] provided the first evidence for an atmos-

phere. Dollfus [8] examined the distribution of polarized light from

different parts of the planet. At small phase angles, there appeared to

be no difference in polarization for the bright or dark regions. However,

as the phase angle increased, the polarization became stronger at the

tips than at the center of the crescent. Since the moon does not exhibit

this phenomenon and since the surfaces of Mercury and the moon are con-

sidered similar, Dollfus concluded that this excess polarization was the

result of a weak atmosphere.
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In 1963 N. Kozyrev [10,13] obtained 20 spectrograms of the planet
and of its near vicinity. For comparison, spectrograms of the sun were
also taken at the sameposition where Mercury would be when the spectro-
grams of the planet and vicinity were programmedto be taken. This tech-
nique enabled Kozyrev to makea direct comparison using both kinds of
data samples. Analysis of the data revealed somehydrogen lines which
appeared to have shifted toward the violet region while other hydrogen
lines appeared to have shifted toward the red region of the spectrum.
Because the ultraviolet radiation of the sun, in ionizing hydrogen, is
not sufficient to produce these effects, the data implied that hydrogen
was present as a genuine dense atmosphere rather than an ionosphere.
Kozyrev believed that since Mercury is the nearest planet to the sun,
a tenuous hydrogen atmospheremight be maintained by fluxes of protons
from the sun. Obscuration of surface features as noted by Antoniadi
(see Sandner, [4]) and other_ as well as Futschek and Severinski [see
Sandner [4]), who claimed to have detected an aureole surrounding the
planet, are also evidence for an atmosphere. According to Spinrad and
Hodge [15,16] the spectrographic, polarization and radio observations
lead to the conclusion that the planet does have a tenuous atmosphere
and that it may be time variable. Field [14] in his analysis of micro-
wave emission (3 cmwavelength) data obtained by Howard, Barrett and
Haddock [25] observed a systematic tendency of the brightness tempera-
ture data to lie above the theoretical curve of brightness temperature
with respect to phase assuming a back-side temperature of 0 °K. Field
[14] suggested that an atmosphere is responsible for the transport of
heat to the back side.

In addition Barrett [23], after analysis of data from reference 25,
postulated that the dark-side temperatures as predicted by Walker [22]
were not as low as 28 °K but could be close to 270 °K.

By meansof microwave .equipment (1.53 cmwavelength), Welch and
Thornton in September 1964 [24] obtained brightness measurementsof Jupiter
Saturn, and Mercury while Mercury's average illumination was about 25 per-
cent. Whenthese data were analyzed, they obtained a meandisk temperature
of 465 °K ± 115 °K for Mercury. By assuminga subsolar temperature of
620°K and a pole-darkening proportional to cosl/e_, Welch and Thornton
postulated that the contribution of temperature from the unilluminated
part of the disk was about i00 °K. Also, by assuming that the properties
of the surface materials of Mercury are similar to the moon, as indicated
by polarization studies, Welch and Thornton theorized that the large dark-
side contributi6n to the disk temperature is a result of internal radio-
active heat sources. Although the thermal data tended to imply that
Mercury has an atmosphere, additional information was required to support
or disprove its existence. Before 1965, Mercury was considered to be in
synchronous rotation, and the high back-side temperature could be explained
if there was an atmosphere to transport the heat to the dark side. Recent
radar probe measurementsby Pettengill and his associates [18] at Arecibo,
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Puerto Rico, during the 1965 inferior conjunction of Mercury, indicated
that the rotational period was different from the orbital period. The
rotation of the planet is now considered to be direct with a sidereal
period of 59 ± 5 days. Although the direction of the pole is not well
determined from these limited data, the authors of reference 18 agree
that it is approximately normal to the planetary orbit. Analysis of
these data by Peale and Gold [20] indicated that (i) the rotation rate
wasbetween 56.6 and 88 days, (2) Mercury has little permanent rigidity,
and (3) the nonsynchronous rotation maybe explained in terms of solar
tidal effects. Analysis of the samedata by Colomboand Shapiro [29,30]
suggests that the rotational period is 58.65 days (2/3 of the orbital
period) and that the rigidity of the planet is higher than that permitted
by Peale and Gold. McGovern, Rasool and Gross [21] in their analysis of
50 drawings of Mercury produced from visual observations by Antoniadi,
Lyot and Dollfus, and Baumconcluded that, in addition to the previously
accepted 88 days, there exists, based on 6 pairs of these drawings, at
least three possible values for the rotation rate: 50.1, 58.4, and
70.2 days. Recently, McGovern, Rasool, and Gross [ii] have indicated
that a period of rotation of 43.6 days could also be possible. However,
the 58.4 ± 0.4 days represent the best value for the rotational rate,
at the present time, since it is consistent with both the radar and
observational data. Since the planet has been found not to be in syn-
chronous rotation, the case against an atmosphere becomessomewhatstronger.

In April 1965, Epstein and his associates [26,27], in making bright-
ness measurementsin the 3.4 mmband, obtained a value of 220 i 35 °K for
the dark-side temperature. The most significant result was that there
appeared to be no dependenceof temperature on variation in phase. These
data seemedto be in disagreement since other measurements [27] at 8 mm
indicated that a large variation with phase should occur at the smaller
wavelength of 3 mmif the surface materials of Mercury were like that of
the moon. Recent radio thermal measurementsat 1.9 mmby Kaftan-Kassim
and Kellermann [28] of the National Radio Astronomy Observatory during
February and March 1966 revealed that Mercury's day-to-night range in
brightness temperature is about 75 °K centered on a meanvalue of 288 °K.
Later, using his 3.4 mmdata, Epstein [28] reported that he also found
these day-to-night variations. Since the thermal emission originates a
few wavelengths below the surface, the temperature a few decimeters below
the surface may remain constant at 270 °K at least. Since the planet
is rotating, the entire surface is being exposed to solar radiation.
Therefore, the high dark-side temperature now seemsrealistic. Since
there has been no actual surface temperature measurementsfor the dark
side (anti-solar point) of Mercury, the possibility of a meager atmos-
phere consisting of heavy gases, however, still exists. If a 5 mbatmos-
phere of carbon dioxide is present, then atmospheric circulation could be
an efficient means to transport the heat from the day to the night side.
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Recently, Rasool, Gross, and McGovern [II] have interpreted the
.... _=_h_r p_1_tion, and thermal data to indicate that Mercury
has an atmosphere with a probable surface pressure of 0.01 to i0 mb.
Thus, at the present time, it is very difficult to either prove or dis-
prove the existence of an atmosphere or its composition. Using the data
_ _.... i Cros= a_ M_anvprn [111 as a startinR point for an inhouse
study by the author, several atmospheric models for this planet were
developed to provide the spacecraft design engineer with preliminary
environmental criteria for use in spacecraft design studies. In the
development of each model, it has been assumedthat the atmosphere is
not in circulation and that the atmosphere is stable against gravita-
tional escape and solar wind effects. The input data assumptions for
the model atmospheres are presented in table II.

Figures 1 and 2 illustrate profiles of the sunlit side pressure
and density data, while figures 3 and 4 illustrate similar profiles of
the dark side. Other atmospheric data are presented in tables III
through VIII. Figure 5 illustrates a typical atmospheric density
operations envelope for the maximumdensity model.

CONCLUDINGREMARKS

Atmospheric models for the planet Mercury have been based on the
latest data. Becausethese models are only as good as the input infor-
mation, they must be considered as rough approximations. However, the
author believes that this information is realistic enough for use as
preliminary design criteria guidelines at least for the present time.
As more data becomeavailable, more realistic atmospheric models will
be constructed.
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TABLE I

Planetary Geophysical and Astronomical Data for Mercury

[5,6,7,11,17,32]

Mean distance (Earth = i A.U.)

Orbital velocity

Sidereal period

Inclination to ecliptic

Eccentricity

Equatorial radius

Flattening

Mass of planet to mass of earth

Mean density

Velocity of escape

Rotation period

Inclination of equator to orbit

Gravitational parameter

Visual albedo

Mass of sun to mass of planet

Theoretical temperature

Spherical black body (rapidly rotating)

Hemispherical black body (slowly rotating)

Sub-solar black body (mean measured value)

0.387099 A.U.

47.87 km/sec

87. 969 days

7.00399 °

O. 205627

2,422 km

0. 056

5.13 gm/cm _

4.2 km/sec

58.4 ± 0.4 days

0°

21,685.53 km3/sec 2

0. 056

6,120,000

441 °K

525 °K

624 °K
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SUMMARY

N68-18845

Current knowledge of the thermodynamic properties of the Martian atmosphere

is reviewed, with consideration given to the vertical profiles of composition,

temperature, number density, and pressure. There are major uncertainties in

these profiles; in particular, a significant area of disagreement resides in

identifying the main ionospheric layer measured by the Mariner IV occulta-

tion experiment as being analogous to a terrestrial F2, FI, or E layer. The

latest values of the optical properties of the atmosphere and surface, the

thermal properties of the surface, and the convective heat transfer coefficient

of the atmosphere near the surface are briefly reviewed and compared.

A brief discussion of potential experiments is given and includes

polarization studies of CO 2 and H20 frosts, determination of the upper atmos-

pheric reaction rate coefficients for temperatures approaching 80°K, and

determination of the convective heat transfer coefficient near the Martian

surface.

I • INTRODUCTION

The thermodynamic properties of the Martian atmosphere which are considered

to have significant importance to spacecraft design and which may lend them-

selves to laboratory simulation are reviewed. The major objectives of this

study were: (I) To review current knowledge of the thermodynamic properties

of the Martian atmosphere, (2) To identify and briefly define the significant

parameters and their interrelationships, and (3) To suggest experiments that

could be performed to clarify or augment existing knowledge of the thermal

properties of the Martian atmosphere.

Much of the information concerning the planet Mars is still basically

hypothetical, and this lack of definitive data has led to different, even

opposite, interpretations of the same observations, and often extrapolations

approaching speculation.

Selected for investigation and evaluation were several thermally related

parameters, many of which relate to other technical areas and which cannot

be easily separated because of their interdependence. A prime example of this,

Prepared for NASA/MSFC under Contract NAS8-20082.
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which is of particular interest to this task, is that of dissociation and

ionization. These reactions taking place above about 60 km can have a signi-

ficant effect on the heat balance of the atmosphere and are dependent upon

the atmospheric composition, altitude, energy spectrum and flux, recombination

rate, etc.

Although most of the thermodynamic experiments suggested in this report

could probably be performed in the same basic facility or laboratory, experimen

involving larger-scale effects, such as the transport of dust by horizontal

winds and cyclonic disturbances, require different types of laboratory apparatu

including a low speed, low density flow facility.

II. DISCUSS ION

Brooks has published an excellent comprehensive survey paper [i] of the

complete Martian atmosphere. Although Brooks' paper is useful as a quick

reference for the latest information, it does not expand on the major incon-

sistencies and uncertainties that remain and which are of great concern in

the present study. Where possible, areas that may lend themselves to experi-

mental verification and simulation will be pointed out here. The more signi-

ficant thermodynamic parameters are discussed in the following paragraphs.

A. Present Knowledge of Selected Thermodynamic Properties

I. Surface (Atmosphere) Temperatures. The term "surface atmosphere

temperature" refers here to the temperature of the Martian "air" only a few

meters above the solid lithosphere surface. This specification is necessary

since it is believed that there can be a large variation in the surface atmos-

phere temperature and the surface (solid lithosphere) temperature [2]. In

fact, as a result of the radio occultation experiment of Mariner IV [3] the

surface atmosphere temperature was deduced as approximately 180 + 20°K, while

the surface temperatures were suggested to be approximately 240°K for the

relative time, conditions, and location of the Mariner IV measurements. However

as discussed in the next paragraph, the surface temperature was based on radio-

metric observations made before 1956 [4]. Therefore, it is only conjecture

at this time that the temperature differential was as high as suggested,

although, by analogy, Gifford established that the diurnal variation of the

air temperature at 2 meters above the Gobi desert (Earth) in June is only about

25 percent of that at the surface.

The surface atmosphere temperature was calculated from the equation

T = H m g/k (i)

where H is the number density scale height, m is the mean molecular mass, g

is the gravitational acceleration (at Mars' surface), and k is the Boltzmann

constant. The scale height (H) was measured by the Mariner IV occultation

experiment and the mean molecular mass was based on the assumption that the

bulk of the atmosphere is carbon dioxide. Of course, the justification for
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the preponderanceof carbon dioxide results from the total surface pressure
deducedfrom the occultation experiment being approximately the same as the

partial pressure of carbon dioxide (4 to 6 mb) measured spectroscopically

from Earth [5 and 6].

Knowing the surface atmosphere temperature and the total molecular number

density (n), we can calculate the total surface pressure from the equation

of state

P = nkT, (2)

Obviously, then, the data required to measure the surface atmosphere temperature -

other than direct measurements using landing vehicles - is the number density

scale height and the surface mass density.

Hopefully, additional instrumented flights will be capable of making

similar measurements from which the temperature may be deduced, or even better,

measured directly.

2. Surface (Lithosphere) Temperatures. Most of the available knowledge

of the surface temperature of Mars comes from radlometrlc observations assembled

by Gifford [4] and Sinton and Strong [7]. Figure i [8] gives the observed

diurnal temperature variation from observations taken in 1954 [7], when the

planet was near perihelion, nearest to the Sun and Earth. The values given

in Figure i include tentative corrections to the data of Sinton and Strong

as made by Opik [9] for imperfect emissivity. The dashed portion of the curve

for the nocturnal temperatures represents estimations by Opik [8], who suggests

that the large diurnal temperature amplitude indicates a low thermal conductivity

of the upper surface materials.

The observations of Sinton and Strong [7] support an extreme diurnal

temperature variation of about 100°C at the equator. This extends considerably

the diurnal variation from 50°C as reported earlier by Gifford [4]. It has

been postulated [2] that the noontime equatorial surface temperature for Mars

could be 75°K higher than the air temperature near the surface which indicates

very poor thermal coupling between the atmosphere and lithosphere. This poor

thermal coupling is attributed in part to a very low thermal conductivity for

the surface material [8].

Some more recent average temperature values (Table i), reported by Johnson

[I0], are based on observations made at the Mr. Wilson and Lowell observatories

using vacuum thermocouples.

Table I. SURFACE TEMPERATURE DATA FOR MARS

Event Temperature (°K)

248Mean temperature of illuminated disk

Tropical diurnal temperature

Sunrise

Midday

Sunset

Polar Caps

Average

Limbs

225 to 215

265 to 285

280 to 265

2O5

260
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Values of surface thermal conductivity, specific heat, reflectivity, etc.,
are required to provide a basis for mathematically predicting the surface tem-
peratures. Radiometric observations from orbital vehicles and direct temperature
measurementsare encouraged. Additional laboratory investigations of the thermo-
physical properties of possible Martian surface materials would provide more
useful information concerning the composition o£ the lower atmosphere.

3. Optical Properties of the Atmosphere and Surface.

a. Transmisslvity and specific scattering of the atmosphere, and

surface reflectivity. Table 2 provides more data on the transmission coefficient

(p) and specific scattering (a) of the Martian atmosphere, and the reflectivity

(s) of the surface. These values were compiled by Opik [9 and Ii] from Russian

observations made with a small (6-inch) telescope [12] .

Table 2. SOME SELECTED OPTICAL PROPERTIES

OF THE MARTIAN ATMOSPHERE AND SURFACE

o

Wavelength (A) p a s

0.33

0.54

0.60

0.69

0.74

0.20

0.22

0.23

0.24

0.20

4600 (Blue)

5200 (Green)

5430 (Green-Yellow)

5800 (Yellow)

6400 (Red)

0.25

0.25

0.34

0.40

0 •53

b. Albedo. According to Opik [8], the albedo for the Martian

atmosphere in the blue and violet range is about 0.15. Thus, only about 15

percent of the violet light stopped by the atmosphere is truly scattered in

all directions, while 85 percent is absorbed and converted into heat. On

the basis of a paper by Kuiper [13], Johnson [i0] lists a value of 0.148 for

the integrated visual albedo.

However, the acceptance of a value of 0.15 or 0.148 for the integrated

albedo seems inadvisible. According to G. de Vaucouleurs [14], "...new data

on the spectral reflectivity curve of Mars, in conjunction with the spectral

energy curve of the Sun, lead to a value of 0.25 for the radiometric or inte-

gral albedo of Mars. This is significantly higher than the visual value of

0.15 often used in the past in theoretical calculations on the heat budget of

the planet ...; hence, somewhat less solar energy, in the ratio 0.75/0.85, is

available at and near the surface of Mars than we thought previously."

The foregoing paragraph requires careful consideration since some authors

are still using albedo values of 0.15 while others are using values of 0.25 to

0.26. For example, Neubauer [15] used a value of 0.26 for the integrated albedo

in his study of the thermal convection in the Martian atmosphere, while Leovy

[16] used an albedo value of 0.15 in his study of the thermal properties of

the Martian surface. This appears to be a serious inconsistency and is a

problem area that should be resolved before any further serious studies are

made of the overall heat budget.
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4. Thermal Properties of the Martian Surface. Most of the following

values for the thermal properties of the Martian surface are based on the assump-

tion that the surface near the equator is a fairly homogeneous layer of finely

powdered goethite or limonite having a characteristic size of not more than

a few microns. Table 3 is a tabulation of some of these latest derived and

assumed values and their sources.

Table 3. THE THERMAL PROPERTIES OF MARS SURFACE

Quantity

o d (Density)

0 d (Density)

kOdC

k0dC

k (Thermal conductivity)

k (Thermal conductivity)

c (Specific heat)

h c (Convective heat
transfer coefficient)

Units

_/c2

 1c2

cal2/sec cm 4 o_

cal2/sec cm 4 o_

cal/cm sec °K

cal/cm sec °K

cal/gm OK

cal/cm 2 sec OK

Value

2.7

2.0

1.53 x 10 -5

5.76 x 10 -6

3.3 x i0 -5

2.0 x 10 -5

0.173

0.35 x lO -4

"to

1.1 x lO -4

Reported

By Whom

Neubauer [15]

Leovy [16]

Neubauer [15]

Leovy [16]

Neubauer [15]

Leovy [16]

Neubauer [15]

Leovy [16]

Derived or

Assumed

Parameter

Assumed

Assumed

Derived

Derived

Derived

Derived

Assumed

Derived

a. Density at the surface. Johnson [I0] reports calculations made

by MacDonald [17] which give a mean surface density of 3.8 to 3.9 gm/cm 3 at zero

depth. The later values taken by Leovy [16] and Neubauer [15] were based on the

assumption that the Martian surface material is similar to finely powdered

goethite or limonite (Table 3).

-5 cal2/sec cm 4 OK2
b. The parameter (kPdC). A value of 1.53 x I0

was calculated by Neubauer [15] from a heat balance based on a temperature

curve obtained from Planets and Satellites [18]. The temperature curve used

belonged to one of the bright areas believed to consist of goethlte or limonite.

Leovy [16] calculated a value for kOdC of _5.76 x 10 -6 cal2/sec cm _ °K2 by a

similar procedure using a diurnal temperature curve from Sinton and Strong [7].

Their temperature curve was based on observations, all of which were taken

within a few latitudinal degrees of the equator.

The value of k0dC derived by Neubauer [15] is larger than the value

derived by Leovy [16] by a factor of more than 2. Part of this discrepancy

may be due to the different values taken for the albedo (0.15 for Leovy and

0.26 for Neubauer), as discussed above in the section on albedo. Another

possible reason for the discrepancy may be the assumption by Neubauer that the
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main constituent of the Martian atmosphereis nitrogen rather than carbon
dioxide. This does not _.... I__+^ _ .... ly=_ _ _,,h=,,_. h,,t th_ work
should be updatedwith the latest values of pressure and composition.

c. Specific heat. Neubauer [15] obtained the value of specific
heat for the .... c..... +=_=I _..... _weeapo]atlonof a table for c (T) of
goethtte in Landolt-Bornstein [19]. The value taken by Neubauerwas c = 0.173
cal/gm °K. Leovy [16] cited a value of 0dC%0.30 cal/cm3 °K which was said to
be considered representative of powderylimonite, or of fine quartz sands.
Leovy assumedthat this product could be broken into 0d = 2 gm/cm3 and
c = 0.15 cal/gm °K. The source of Leovy's data wasnot listed.

d. Thermal Conductivity. Thevalue of k = 3.3 x 10-5 cal/cm sec °K
as reported by Neubauer [15] wasderived from the product k0dc and the values
for goethite and limonite. Likewise, the value of k _ 2 x 10-5 cal cmsec °K
determined by Leovy [16] wasdetermined from the product k0dCas explained
previously.

e. Convective heat transfer coefficient. Leovy [16] suggested
that the order of the convective heat transfer coefficient should be hc _ 10-4
cal/cm2 sec °K. Hewas able to conclude this from a heat balance where it was
assumedthat the linear convective heat-flux wasa good approximation for
forced convection with steady winds.

5. Surface-to-Atmosphere Thermal Coupling. The thermal coupling in

question refers to how well heat is transferred between the surface and the

atmosphere. From the literature reviewed thus far, it is apparent that only

a very limited amount of knowledge exists on this subject. Most conjectures

appear to agree with that of Anderson [2], who suggests that great convective

instability can occur in the lowest layers of the atmosphere. As mentioned

previously, the wide diurnal temperature variations and the possibly large

surface-to-atmosphere temperature differentials could create unstable convective

layers near the surface.

The most recent theoretical analyses reviewed concerning thermal con-

vection near the surface of Mars are those by Leovy [16] and Neubauer [15].

Neubauer's paper supports the highly interesting contention that convective

instability near the surface can give rise to small-scale cyclonic disturbances

(dust devils) and that these disturbances explain the yellow clouds observed

on Mars.

Direct measurements of the temperature profiles in these lowest convective

layers may be possible if performed by landing vehicles. Measurements obtained

from the radio occultation experiment fall because of the uncertainty of the

height of specific topographical features along the llmb.

6. Atmospheric Composition. Although nitrogen was originally thought

to be the major atmospheric constituent of Mars, it is now believed that carbon

dioxide is the major constituent because it is compatible with both the Mariner

IV occultation experiment and spectroscopic measurements [3].

Brooks [I] summarizes the gaseous composition as follows: ,,... The

gases and vapors can be grouped in three classes according to estimates of
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their abundances:(I) C02, A, Ne, N2; (2) O, 02, H20, CO;and (3) 03, NO,NO2,
N204, and all others. The total abundancesof the groups are of the order of
magnitudeof i00 m-arm, 5 cm-atm,and 5 micron-arm, or 99.95 percent, 0.05
percent, and 0.000005percent, respectively, of the total atmosphere. With
considerable uncertainty, it can be stated that CO2 accounts for about 70
percent, argon and/or neon about 20 percent, and N2 about i0 percent, but it
is realized that CO2 mayconstitute more than 90 percent of the atmosphere
if the total pressure is found to approachthe CO2 partial pressure."

7. Temperature Versus Altitude Profile.

a. Temperature versus altitude profile above the tropopause. There

is general agreement among several investigators regarding important temperature

points inferred and deduced from the Mariner IV radio occultation experiment.

Specifically, agreement exists on a surface atmosphere temperature of approximately

180 + 20°K and a temperature of approximately 80 to 850K in the region near

I00 km above the surface [2, 3, 20, and 21]. However, there are two areas of

disagreement that should be noticed, one of which appears to be of considerably

more consequence than the other.

First, the temperature-versus-altitude profiles below about i00 km are

generally in poor agreement although they all tend to follow the same trend

(Figure 2). The region of greatest disagreement below i00 km appears to be

between approximately 50 km and 90 km. The main explanation given for this

disagreement [2 2] is that the exact sublimation and diffusion times for CO 2

are not completely known for this region. Fjeldo, et al. [3] assumed an F 2

model allowing the temperature below i00 km to dip well below the saturation

temperature for CO 2. Johnson [23] also assumed an F2 ionization model; however,

he assumed that the temperature profile from the top of the convective layer

(_14 km) up to about i00 km approximately follows the vapor-pressure curve

for dry ice.

The second, and possibly the most significant, area of disagreement is

the temperature-versus-altitude profile in the region of the ionosphere and

above. The disagree,nent resides in identifying the main ionospheric layer

measured by Mariner IV as being analogous to a terrestrial F2,F I, or E layer.

Several investigators including Johnson [23] and Fjeldbo et al. [22] have suggested

an F 2 model while Chamberlain and McElroy [24] support the E model. The large

and very serious disagreement in the range of temperatures predicted by the two

models is shown in Figure 2. The ambiguous interpretations of the Mariner IV

radio occultation data at ionospheric heights result in proposed neutral number

densities differing by factors up to 104 and upper-atmospheric temperatures

varying from about IO0°K to more than 400°K [22]. This disastrously wide range

of values is not a result of design criteria parametric studies, but is, rather,

a result of a variety of interpretations of the occultation experiment.

b. Adiabatic lapse rates to the tropopause. Based on the results

of Mariner IV, Johnson [23] suggested the F2 model shown in Figure 2. He

assumed that the fall in temperature from the surface atmosphere value to the

tropopause through the convective layer should be adiabatic. He suggested

that the temperature through most of the atmosphere should run along the dry-

ice vapor-pressure line which sets the temperature at the tropopause altitude

(_14 km) at 140°K. Thus, with a surface atmosphere temperature of 210°K,

the adiabatic lapse rate is about 5°K/km for an atmosphere assumed to consist

mainly of carbon dioxide.
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Models 4 and 5 of Ohring and Mariano [25] are in fair agreementwith
the modelof Johnson [23] in the troposphere and the lower part of the atmos-
phere to approximately 45 km. Ohring and Mariano assumedadaibatic convective
lapse rates to the tropopause, but computedthe radiation temperature change
rates as a function of altitude. Therefore, the temperature profiles of
Ohring and Mariano do not exhibit linear adiabatic lapse rates.

The adiabatic lapse rate calculation by Anderson [2] for a surface
atmospheretemperature of 210°Kis 5.44°K/km, which is in fair agreementwith
the 5°K/kmdetermined by Johnson [23]. The adiabatic lapse rate can be
determined from

A = g/Cp,

whereg is the acceleration of gravity and Cp is the meanvalue of the specific
heat capacity at constant pressure.

8. Density and Pressure Versus Altitude Profiles. Figures 3 and 4

show comparisons of the number density and pressure versus altitude profiles

for various atmospheric models. These models generally represent the results

of assuming different atmospheric compositions and making different assumptions

about the heat transfer processes taking place.

The models of Weidner and Hasseltine [21] and Evans et al. [26] represent

the extreme variability in the Martian atmosphere for the design of spacecraft,

and should not be considered as representative of the actual Martian atmosphere.

Three model atmospheres of differing atmospheric composition, surface pressure,

and surface temperature were assumed by Weidner and Hasseltine (the upper density

model - 48.8 percent CO 2 and 51.2 percent N2; the mean density model - 75

percent CO 2 and 25 percent N2; and the lower density model - i00 percent C02).

(The MSFC Planetary Atmosphere Computer Program was used in generating these

models.) The lower density model appears to agree quite well with that of

Fjeldbo et al., [3] because of the large (I00 percent) percentage assumed for

carbon dioxide. Weidner and Hasseltine assumed that the atmosphere at 60 km would

change from a purely mixed medium to a gas undergoing strong dissociation and

diffusive equilibrium. The assumption was made that, when the carbon dioxide

is dissociated, the resulting atomic oxygen and carbon monoxide begin to undergo

diffusive separation.

The number density profile of Chamberlain and McElroy [24] is based on

an available radiative model of Prabhakara and Hogan [27] having a surface

pressure of i0 millibars and an assumed composition of 44 percent CO2 and 56

percent N 2 (including 0.4 percent 02). They insist that the lifetime of a CO 2

molecule against photodissociation "... is 3 x 106 seconds, or about i month,

high in the atmosphere. But in the main dissociation region the lifetime is

much longer. For example, with photochemical equilibrium...the optical thickness

to ultraviolet is 0.4 at the 02 peak, so that here a CO 2 molecule could survive

intact for 103 years." In addition, Chamberlain and McElroy assumed that the

constituent gases were homogeneously mixed throughout the atmosphere although

it was admitted that this is an oversimplification and represents the opposite

extreme to models based on complete dissociation. Even when models with much

lower densities and temperatures are assumed at the base of the ionosphere, the

temperatures calculated for the ionospheric peak and the thermosphere are still
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extremely high compared to models of other investigators. In particular,

Chamberlain and McElroy assumed the temperature (IO0OK) and density at 70

kilometers as used by Johnson [23] to test the effect of lower temperatures

and densities on their model. The height of 70 kilometers was chosen since

Johnson suggested that the onset of diffusive separation began at this level and,

also_ that it was the level at which direct solar heating became important.

Chamberlain and McElroy subsequently calculated a temperature of 285°K at 125

kilometers (in the region near the observed ionospheric peak) and an exospheric

temperature of 375OK, both of which are in serious disagreement with the nearly

isothermal temperature of 85°K as suggested by Johnson.

The previous paragraph concerning the large disagreement in the ionosphere

and exosphere temperatures has been included here because it is tied so strongly

to the assumed models of density and composition. Model I of Prabhakara and

Hogan [27], used in the calculations of Chamberlain and McElroy, seems inconsistent

with the generally accepted density and composition models of other investigators

who assume the atmosphere to be composed mainly of carbon dioxide [2, 3, and 23].

B. Potential Experiments

The review of present knowledge concerning the Martian atmosphere has

pointed out several experiments that could aid in clarifying and explaining

certain anomalies and unknowns of the atmosphere. In fact, several assumptions

made concerning the Martian atmosphere are based on incomplete data from

laboratory experiments performed on Earth.

The potential experiments outlined below are believed to be within the

present state-of-the-art and most can be performed in small laboratory facilities.

i. Polarization Studies of CO 2 and H20 Frosts. There is still a

Considerable amount of uncertainty concern fng the composition and physical

make-up of the "polar caps" and the so-called "blue haze." According to G. de

Vaucouleurs [28], the polar caps were definitely proven to be "ice" (frozen

water) by Gerard P. Kuiper. From Kuiper's direct spectrophotometer investiga-

tions, it was theorized that the polar ice caps were not thick snow and ice

fields, but were only thin coverings of frost. This theory was still supported

as late as 1964 [29].

The radio occultation experiment of Mariner IV has shown the surface

pressure to be about 4 to 5 mb. This experiment, along with earlier determina-

tions of the partial pressure of CO 2 on Mars, has substantiated the theory that

CO 2 is the major constituent of the Martian atmosphere. Also, more accurate

surface pressure measurements have resulted in better estimates of the surface

(lithosphere) and surface atmosphere temperatures. This new information has

prompted the theory that the polar caps are composed mainly of precipitated

carbon dioxide with possibly a very thin film of water ice covering the solid

carbon dioxide. This theory has been suggested by Leighton and Murray [30]

who state that ",..CO 2 should precipitate out and accumulate at the higher

latitudes during local winter." They felt that the possibility of a thin film

of the frozen H20 at the top of the receding CO 2 polar caps might alter the

"...reflective properties of the cap enough to make it appear to be composed

of water ice."
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Thus, a very simple experiment could be performedto investigate the nature
and amountof polarized light given off by various combinations of solid carbon
dioxide and water frost formedunder the predicted temperature and pressure

environment of the Martian polar caps. However, this study would not be entirely

conclusive until more accurate surface temperatures are obtained for the regions

under consideration.

Although possibly more difficult to simulate under laboratory conditions,

additional polarization studies of "clouds" formed of frozen crystals of H20

and CO 2 may shed new knowledge concerning the so-called "blue-haze, of Mars.

Carbon dioxide as well as carbon and hydrocarbon smoke have been suggested by

Salisbury [31] as possible candidates for the "blue-haze."

2. Determination of the Reaction Rate Coefficients, kl, at Temperatures

Approaching 80°K. THe Mariner IV occultation experiment has provided new and

highly instructive information about the Martian atmosphere. A great deal of

conjecture remains concerning the reactions taking place in the Martian upper

atmosphere and ionosphere. One such model has been formulated [3] based on

present information about the critically important rate coefficients for ion

loss processes. The significance of this model is the choice of the critically

important reaction and rate coefficient for the loss of ionized oxygen in the

main ionospheric layer. Atomic oxygen was chosen to be the principal constituent

above some altitude because of its lightness compared to CO, N 2, 02 , Ar, and C02.

According to FJeldbo et al., "...the most promising model for the upper atmosphere

appears to be the one in which reaction (5)(0 + + CO2-_ O_ + CO, k I = 10 -9 cm3/sec)

is the dominant rate mechanism in the main ionospheric layer." (Rate coefficient,

kl, times particle density equals loss rate.) However, the rate coefficient (k I)

was taken as that measured at 300°K rather than at 80°K (the predicted ionospheric

temperature) and the temperature dependence on the rate coefficient is not well

known. Therefore, this atomic-oxygen/carbon-dioxide model of the upper atmos-

phere may have to be revised when new information is obtained on the temperature

dependence of the rate coefficients.

An intensive study should be made of the temperature dependence of the most

suitable rate coefficients. This could very possibly be done in a cryogenically

cooled vacuum chamber. As discussed earlier, the most important rate coefficient

to be investigated is that associated with the loss of ionized atomic oxygen

as depicted by the equation

+ + CO.
0+ + CO 2 ÷ 02

3. Determination of the Characteristic Time Constant for CO 2 Sublimation.

Fjeldbo et al.[3] have deduced a temperature versus altitude profile (Figure 2)

.based on the assumption that all of the CO 2 in the atmosphere is supercooled.

However, they suggested that this may well not be the case and that some C02

sublimation might take place. They showed that the temperature and number density

profiles may deviate widely from the supercooled case if varying amounts of

sublimation are allowed. The exact amount of sublimation taking place could not

be predicted since the characteristic time constant for the process is not known.

It is suggested that the relative amounts of sublimation nuclei could be

determined for different degrees of supercooling in a simulation facility. Such
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a facility would require the ability to maintain selected pressures and tempera-

tures .._i. -_--.I+_^^,,_1_, _ o_1= _n _-m4_= _ _g_ _n ,_h_ f_ g_ _

supercooled. The major problems anticipated with such a study are as follows:

i. Accounting for the gas and sublimation nuclei that condense on the

cool chamber walls.

2. Measurement of the actual number of sublimation nuclei present per

unit volume for any given condition of temperature and pressure.

It is believed that solutions to these problems can be found. For example,

the mass of carbon dioxide being deposited continuously on the cooled walls

of the facility may be measured by cryogenic quartz crystal microbalances.

The amount of sublimation nuclei present may possibly be measured by visualiza-

tion techniques such as ultraviolet fluorescence.

4. Determination of the Convective Heat Transfer Coefficient Near the

Surface of Mars. One of the most recent calculations of the convective heat

transfer coefficient near the surface of Mars was made by Leovy [1611 Leovy
suggested a range for this coefficient of _0.35 x 10 -4 to _I.i x i0 -_ cal/cm 2

sec°K. It was assumed that the linear, convective-heat-flux law could be ex-

pected to be a good approximation for forced convection with steady winds. The

basic exchange of heat among the ground, atmosphere, and space was assumed to

be expressed by

h(To-Th) = eOTo4- R b + hc(To-Ta),

where T o is the Martian surface temperature, h and Th are parameters related to

radiative processes as well as to conduction and convection in the atmosphere,

e is the infrared emissivity of the ground, o is Stefan's constant, Rb is the

flux of back radiation, and h c is a convective heat-transfer coefficient. The

parameter T a depends on the temperature distribution in the atmosphere.

The convective heat-transfer coefficient near the surface of Mars could

be simulated along with the Martian wind and dust storms in the same facility.

This should pose little problem since the temperature profile above the surface

of the flow facility can be measured readily at several stations. Likewise,

measurements of the radiation arriving at the surface of the facility may be
taken or estimated.

A major importance of such a measurement of the convective heat transfer

coefficient is its relationship to the initiation of winds and dust devils

through natural convection. Before performing the aforementioned convective

heat transfer tests, the proper scaling laws must be investigated for natural

and forced convection under similar circumstances. This could, perhaps, result

in the suggestion of smaller-scale tests that could furnish the desired in-

formation more efficiently and economically.

III. CONCLUSIONS

The present knowledge of Mars resulting from Earth-based observations and

the Mariner IV flyby falls somewhat short of satisfactory design criteria.
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Strong disagreementsstill persist on even the most fundamental aspects of the
Martian environment. Thus, the following conclusions my be listed as a result
of the present review:

• Themain disagreementconcerning the vertical structure of the Martian
atmosphereinvolves specification of the main ionization layer observed
by Mariner IV as analogousto the terrestrial E, FI, or F2 layers.

• Uncertainties still persist in specification of a self-consistent model
of atmospheric composition.

• The exact composition of the polar "ice" caps is unknown.

• Thecorrect value for the integral albedo of Mars is unknown.

• The temperature dependencyof most atmospheric rate coefficients is
unknownfor processes taking place at temperatures well below 300°K.

The temperature and numberdensity profiles are not accurately known
even for the region below diffusive separation since the characteris-
tic time constant for carbon dioxide sublimation is not known.

It may also be concluded that the following list of experimental studies

would provide useful information concerning the Mars atmosphere.

Experimental and analytical investigations leading to more accurate

and reliable values of the cross sections and rate coefficients for

the suspected reactions in the Martian atmosphere.

Investigations concerning the nature and amount of polarized light

given off by various combinations of solid carbon dioxide and water

frost formed under the predicted temperature and pressure environment

of the Martian polar caps.

Experimental and theoretical studies to determine the characteristic time

constant for the sublimation of CO 2, to better specify the number density

and temperature profiles of the Martian lower atmosphere from the tropo-

pause to the lower level of the ionosphere.

• Experimental and theoretical studies to determine the thermal

conductivity of the Martian surface and the convective heat transfer

coefficient of the near surface atmosphere.

.

.
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SIMULATIONSTUDYOFMARTIANATMOSPHERICCOMPOSITION

by

f. _. Gnang
Nortronics-Huntsville

SUMMARY
: N68:1884-6

The feasibility of obtaining information related to the Martian

atmospheric composition by simulating the atmosphere of Mars in an absorption

tube is studied. The physical requirements for such an experiment and an

existing multiple-reflection absorption tube system are briefly discussed.

I. INTRODUCTION

Our knowledge of the composition of the Martian atmosphere obtained

from ground-based observations has been derived primarily from spectrograms

taken of Mars. Interpretation of the spectrograms was guided by our under-

standing of their analogy with spectrograms of the terrestrial atmosphere and

comparison with laboratory simulation experiments. The essence of the

laboratory simulation experiments is to make an artificial Martian atmosphere,

produce its absorption spectrum, and compare this spectrum with that actually

taken of Mars. The constituents of the artificial Martian atmosphere are

placed in an absorption tube with a solar (or selected) radiation source at

one end and an infrared spectrograph at the other. By varying the constituents

of the artificial Martian atmosphere, as well as its physical conditions

(temperature, pressure, and path length), a variety of spectrograms can be

obtained. Comparison of those spectrograms with those actually taken of Mars

will show how close the artificial Martian atmosphere is to the real one.

In earlier laboratory work, absorption tubes of high pressure (up to 50 atm) and

long path (up to 45 meters) were used. However, because of the high pressure

broadening of the spectral lines, a reliable gas content could not be obtained

[I].

The success of the art of simulation, as we have seen, depends

primarily on our ability to create an artificial Martian atmosphere which is

as close as possible to the real Martian atmosphere.

Prepared for NASA/MSFC under Contract NAS8-20082.
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The first consideration is that the observedMartian spectra are
a blend of a solar, telluric, and Martian absorptions. The simulation of
these spectra would best be madeby channeling natural sunlight, received
through the Earth's atmosphere, through the absorption tube that simulates
the Martian atmosphere,although one cannot reproduce in this way the
apparent radial velocity of the planet [2].

Secondly, the artificial Martian atmospherein the absorption
tube is madeup so that the composition, pressure, temperature, and path
length are sufficiently close to the actual Martian atmosphereand at its
observedconditions. The composition and temperature of the mixture will
be chosenfrom a given Martian atmospheremodel. The partial pressure of
each constituent times the path length is its abundance,and is chosen
from observeddata.

II. DISCUSSION

The gas pressure in the absorption tube, to achieve simulation,
must be consistent with the pressure exerted by a unit columnof such gas
mixture transferred to the surface of the planet. The appropriate relation
is furnished by the Curtis-Godson approximation, which states that the
meanpressure along the absorbing path in a planetary atmosphereis equal
to one-half the surface pressure [3]. Thus, for example, with a CO2
abundanceof 55 m-armand a maximumsurface pressure of 5.2 mb, the CO2
pressure in the absorption tube is 2.6 mband the required path length, _,
of the absorption tube will be

55
5.2/2/1000

= 21,200 meters.

This path length is typical of the requirement for simulation.

This did not seem feasible until 1942, when J. U. White [4] developed a

multiple-reflection-type absorption tube which could provide, in a reasonably

short tube, an absorbing path comparable to the solar spectrum in the

Martian atmosphere. An absorption tube used in the Yerkes Observatory,

University of Chicago, is depicted in Figure i. In this apparatus, there

are three spherical, concave mirrors of equal radius of curvature. Two of

these, A and B, are cut from one circular mirror, as shown in Figure ib,

and are mounted at one end of the tube; the third, C, shaped as indicated in

Figure Ic, is mounted at the other end at a distance equal to the radius of

curvature. Light from an automobile headlight bulb, or, for ultraviolet

work, light from a hydrogen discharge tube, is focused on an entrance slit

at 0 in Figure !a_ and ic. From there, the light falls on the two mirrors_

A and B, which form images of the slit at i and -i, respectively, the latter

being discarded. The mirror C is so adjusted that the light from A received

at I is reflected to B. With proper adjustment, A is imaged on B, and no

light is lost except for reflection losses. The mirror B then forms an image

of i at 2, whereupon the light is reflected to A 9 and so on, until the light

emerges at 8 after having traversed the space between the mirrors sixteen

times. By turning mirror A, small increments about an axis perpendicular to

the plane of the paper in Figure la, the number of images on mirror C can be

readily changed. Using this system with a small glass tube 5 cm in diameter
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with mirrors of 150-cm radius of curvature, we can obtain a path length

of 60 meters. With a metal pipe i0 inches in diameter and mirrors of

22-meters radius of curvature, a path length of 5500 meters can be obtained.

The limit to the number of traversals is set by the reflection losses and

by the number of images that can be accommodated on mirror C. If the latter

presents no difficulty, the number of traversals through the tube that can

be made without decreasing the efficiency of the system can be calculated

from the formula

R n i
e

where R is the reflectivity of the mirror, n is the number of traversals,

and e is the base of natural logarithms [5].

Figure 2 shows such a long-path gas absorption tube attached to

a spectrometer for obtaining infrared absorption spectrum [6].

The main function of the windows _l and _2 _ to provide a vacuum

and pressure seal. Of necessity, the material must be infrared transmitting

(generally KBr or NaCI). All mirrors within the tube are prealigned optically

and bonded to metal mounting posts. The mirrors A and B are prealigned to

the principal optical plane of C and bonded to metal posts with provisions

for a push-pull rotational adjustment by screws. Focal adjustment is ob-

tained by movement of the assembly holding A and B. The mirrors M 3 and M 5

are integral to a sub-base, which is _inematically mounted to the main base

of the tube and thus can be readily removed. This allows a frequent measure

of the radiation without the tube and will permit clearance to the polarizing

attachment and sample tubes of other types.

This technique has been used by Herzberg [I] and Kuiper et al. [2].

III. CONCLUSIONS

Presently, because of the tenuous nature of the Martian atmosphere,

employing the technique used by Herzberg and Kulper for its study requires

modification. Since partial pressures of the constituents of the Martian

atmosphere, as well as path lengths, are important to its study, they must be

included in any simulation, and the study must be done at low pressures. In

the case of C02 the pressure is no higher than i0 mb, that is one-hundredth

of the Earth's atmospheric pressure. The path length required for simulating

a CO 2 atmosphere will be thousands of meters. For gases other than C02, the

partial pressure will be even lower, and correspondingly, the path lengths will

be greater. The tenuous Martian atmosphere also prevents astronomers from

obtaining clear absorption lines of constituents other than CO 2 which are

needed for comparative purposes. These, then, present known problems which

must be overcome for successful simulation experiments.

These simulation experiments will give us a better understanding

of the Martian atmosphere, which, in turn, will stimulate further activities

for the other planets.
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SUMMARY

The feasibility of simulating the transportation and deposition of dust and

sand under Martian environmental conditions is examined with a view to developing

design criteria for Martian missions. The dynamic processes active in the ac-

quisition, transportation, and deposition of unconsolidated material are analyzed

and shown capable of producing dust storms and meaningful landforms on the Martian
surface.

The basic conditions necessary for the movement of unconsolidated material

on the Martian surface are the presence of the material and winds with velocities

high enough to move the material. Consideration of the possible geologic pro-

cesses active on the Martian surface indicate that volcanic, meteoritic impact,

and weathering processes would produce unconsolidated material ranging from

clay-size particles to boulders. Theoretical calculations made concerning the

pertinent dynamic atmospheric processes indicate that threshold velocities one

meter above the surface may be as low as 55 m/sec, and that the minimum velocities

are for medium-grained sand which should be plentiful. Previous theoretical

studies have predicted peak surface wind velocities as high as 143 m/sec. Thus

the transportation and deposition of unconsolidated material on the Martian

surface is shown as a probability. Consideration of the typical landforms com-

posed of wind-blown sand indicates that the classical desert barchan and seif

dunes can be expected on the Martian surface, and that their characteristic shapes

will reveal much about the wind direction and velocity. Significantly, these

features can be observed remotely and their interpretation used to evaluate

photographic data returned from probes and to improve design criteria for later

missions. Simulation of the acquisition, transportation, and deposition of dust

under Martian environmental conditions is considered feasible within the present

state-of-the-art techniques, and promises immediate improvement in design cri-

teria.

I. INTRODUCTION

Present estimates of wind velocities, circulation patterns, and related

atmospheric phenomena on Mars are based on observations from Earth, and the

results of sparse theoretical studies. These estimates, however, are no more than

broad approximations and there is a definite need for improvements to meet the
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design criteria requirements for Martian missions. Someimprovedestimates are
expectedthrough further Earth-based observations, better theoretical techniques,
and planetary probe data; however, more immediateand reliable gains can be made
through vacuumchamberand wind tunnel simulation of the Martian atmospheric pro-
cesses. Suchsimulation studies can contribute muchto developing empirical and
theoretical techniques, particularly for exploring the interrelationships between
the atmosphereand surface materials. The nature of an atmosphere, terrestrial
or planetary, governs the effectiveness of weathering, wind erosion, and deposition.
In turn, dust clouds and eolian (wind) landforms, which maybe observed remotely,
are products of atmospheric processes and surface geologic characteristics. Thus,
the dust clouds and eolian landforms are important becausethey canbe observed
remotely and interpreted for what they reveal of the related atmospheric processes.

This study considers the previous experimental and theoretical work on the
transportation and deposition of sand and dust by atmospheric processes as a point
of departure, then develops the applicable theories to the point necessary to
determine the feasibility of meaningfully simulating those processes of the
Martian atmosphere.

A brief review of the physics of eolian processes is madefrom which appro-
priate theories are developed to determine whether unconsolidated material exists
on the Martian surface, and whether the winds could have velocities high enough
to movethe material. The determination includes consideration of horizontal,
vertical, and cyclonic (dust devil) winds as possible transporting agents. Sand
dunes, as typical eolian surface features, are reviewed and their shapesrelated
to winds as a meansof determining the atmospheric significance of eolian surface
features.

In addition, the types of facilities necessary to simulate the various atmos-
pheric processes are investigated and summarizedin the study.

II. PHYSICSOFEOLIANPROCESSES

The problemof particle movementin air, or in fluids in general, has not
been studied in any great depth except in limited areas to meet the needs of a
particular discipline or problem. The deposition of silt and sand in rivers and
harbors, rock ingestion in jet engines, pipeline transportation of particles,
determination of the geological history and formation of sedimentary rocks, and the
interpretation of eolian landforms are just a few of the areas that have been in-
vestigated. Only in two areas have comprehensiveinvestigations beenmade: the
acquisition, transportation, and deposition of sand (0.I - 1.0 mmdiameter) in
a desert environment [I] and the rate of fall of individual particles through a
fluid at rest [2, 3] • In both areas, theoretical and experimental approaches
were used. The laboratory investigations of sand movement[i] also were
supplementedby field investigations.

Bagnold's studies [I] are of particular interest becausethey showthat
a combinedtheoretical and experimental programcan reasonably predict the behavior
of spherical sand-size particles under various wind conditions. His extensive
work covers such areas as the various factors influencing the acquisition of
particles (particle characteristics, wind direction and velocity, surface
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characteristics, gravity, etc.); transportation of particles (suspension,

saltation, and surface creep); and deposition of the particles (true sedimentation,

__, and ....... _ .... X

An extensive investigation of the physics of particle movement in the Martian

environment was not undertaken in this study; rather, only those areas are

discussed that would fuzce..ish clues to the probability of movement of sand and

dust by Martian winds and that would aid in determining the test requirements

of a simulation facility.

Two basic conditions must be met before the movement of sand and dust can

take place on Mars: (I) the presence of unconsolidated material, and (2) winds

with velocities high enough to move the material. The presence of unconsolidated

material on the Martian surface was established in reference 4. The quantity

and characteristics of the unconsolidated material are directly related to the

rock types present and the geologic processes active on the surface. Typical

rock types expected to be found on the Martian surface are basalt, andesite,

obsidian, stoney-iron meteorites, etc. The three geologic processes which are

readily seen as sources of unconsolidated material are volcanism, meteoritic

impact, and gradation•

The unconsolidated material on Mars formed during meteoritic impacts and

volcanic eruptions should closely resemble that found on Earth. However, this

is not thought to be true in the case of sediments formed by Martian gradation

processes because,on Earth, chemical weathering, physical weathering, and a

variety of erosional agents (water, wind, ice, etc.) are active. Water, through

erosion and chemical weathering, is the dominant influence in determining the

characteristics of most terrestrial sediments and, in particular, the formation

of clay-size particles. The apparent absence of large amounts of water in-

dicates that, while clay-size particles _0.0039 nTn) may be present, the extent

and quantity will be much less than found on Earth•

Many investigators believe [5, 6] that the Martian surface is smooth when

compared to the Earth. Ryan, in his paper on Martian yellow clouds [7], considered

the maximum grain diameter of surface material to be less than i00_ and probably

less than 50u. However, careful consideration of possible Martian geologic

processes indicates a much broader range of grain sizes. For example, volcanism

and meteoritic impacts would produce unconsolidated material ranging from clay-

size particles to boulders. Also, physical weathering would generally produce

coarse grained material, with the actual grain size determined largely by type

and texture of the parent rock. Grain sizes as large as 2 to 4 rmm should not

be uncommon. The unconsolidated material furnished by these sources then would

be transported and deposited over much of the planet's surface by winds. Thus,

we believe that unconsolidated material may be wide-spread on the Martian surface

and that the material may occur as wel_ to poorly sorted sediments. The well-

sorted sediments are expected to consist mostly of clay- and sand-size particles,

while the poorly sorted sediments may include particles ranging from clay sizes

to boulders.

Winds with velocities high enough to move the unconsolidated material and

form sand and dust clouds also appear to be present on the Martian surface.

Yellow clouds have been observed on the Martian surface, usually in the lower

latitudes and predominantly in the southern hemisphere. The clouds are generally

local in extent and dissipate in a matter of a few days. However, there have
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been occasions (1956) when the entire disc was covered for several weeks.

Photometric and polarization studies imply that the yellow clouds are composed

of solid particles.

The velocities of these cloud movements have been measured telescopically

(accuracy _ 25%) on numerous occasions [8]. The maximum velocity, observed in

1956, is 24.69 m/see. Numerous other measurements have shown velocities in the

I0 to 12 m/sec range. If Earth analogy is valid, it is probable that winds

within the clouds are higher than the velocity of the cloud movement itself.

Theoretical studies have produced estimates of peak surface wind velocities as

high as 143 m/sec [9].

Two types of phenomena which may be responsible for the movement of uncon-

solidated material on Mars are horizontal and vertical winds associated with

large-scale climatic disturbances and small-scale cyclonic systems (dust devils)

A. Horizontal and Vertical Winds as Agents for Transporting Martian

Unconsolidated Material

Only a few investigators have approached the problem of sand and dust

movement on Mars from a theoretical point of view in any degree of detail. Ryan

[7], using 25-mb and 80-mb atmosphere models, discussed the winds required to

initiate grain motion and to maintain them aloft, the range of particle sizes

that may make up dust and sand clouds, and the probable result of the deposition

phase of the eolian processes. A JPL document [8] basically updates the Ryan

paper by recalculating many of the results, using pressure values of 14 mb

and 40 mb.

Ryan's conclusions concerning the Martian threshold velocities are the

results of calculations based on Bagnold's fluid threshold equation (Prandtl's

rough surface law). The calculations made in this report are also based upon tl

basic equation and the numerical data in Table i. Bagnold's fluid threshold

equation is

v t = 5.75A J_ -'_ gd'log z_ (1)

where

v t = Threshold fluid velocity at any height

A = Dimensionless parameter

o = Particle density

0 = Atmospheric density

g = Gravity field strength

d = Particle diameter

z = Height above the ground

k = Roughness factor (_ 1/30 the effective grain diameter).
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This equation may be restated as

= _.75 V,t log k (2)v t

where V,t, the threshold velocity gradient, is equal to

A o___9.ogd . (3)

Bagnold found experimentally that the dimensionless parameter A was prl-

marily dependent on the Reynolds number (Re) which is defined as

Re = (velocity V,t)(size dimension d)

(kinematic viscosity Y)
(4)

The critical Reynolds number value was found experimentally to be 3.5. For

particles with Reynolds numbers greater than 3.5, A is nearly constant. In air

on Earth this value of A is approximately 0.i. For particles with Reynolds

numbers less than 3.5, the value of A, which was found by Bagnold through

experimentation, is not constant.

No experimental work has been performed under Martian environmental con-

ditions to determine values of A. Thus, we assume in this study that the fluid

threshold equation is valid for Mars and that the dimensionless parameter A for

Mars (A m ) is approximately equal to the dimensionless parameter A on Earth (A e)

for a given Reynolds number. The relationships of the Reynolds number to

coefficient A e were calculated using equations (3) and (4) from data found in

reference i. The Re to A m to d relationships for Mars were then determined

using the following equation:

Re = _ gd) • (5)

Equation (5) is solved for d using numerical data for the two atmospheric models

[9] given in Table I and terrestrial values of Re and A. With the relationships

between Re, A m , and d known, the fluid threshold velocities then can be found

using equation (I) for various heights above the surface and for different rough-

ness factors.

Table i. MARTIAN ENVIRONMENTAL DATA

Model I

Model 2

Gravity

(cm/sec 2

375

375

Density

) (gm/cm _ )

1.5657

1.2096

Pressure

(mb)

i0

4

Composi-

tion %

CO 2 N 2

50 50

i00 0

Atmosphere (Surface)

Kinematic

Viscosity

(cm2/sec)

Ii .0

9.8

Mean Free

Path (m)

6.414xi0 -6

1.020xi0 -6

Coefficient

of Viscosity

(kg/m-sec)

1.7252xi0 -5

1.1827xi0 -5
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As discussed earlier, we disagree with the general opinion that Mars is

extremely smooth and consider it to be as rough or rougher than the Earth. With

this assumption, we calculated the fluid threshold velocities at a height of

one meter above the surface using recent Martian atmosphere data (Model I and

Model 2 given in Table i). The four different values (0.03, 0.05, 0.i, and

0.2 cm) for the roughness factor (k), which were used in the calculations,

represent surfaces composed of particle sizes ranging from 9 to 60 mm in diameter.

The results of these calculations are shown in Figures I and 2.

The high wind velocities indicated by these calculations are not the minimum

wind velocities necessary to cause sand and dust movement on the Martian surface.

There exists a critical wind velocity, less than the fluid threshold velocity

of a given surface, where saltation once set in motion can just maintain itself

indefinitely down-wind of the disturbance. This critical velocity was termed

by Bagnold as the "impact threshold velocity." Bagnold's experimental results

show that impact threshold velocities are approximately 20 percent lower than

those for the fluid threshold. Upon the assumption that this phenomenon is

valid for Mars, the minimum impact threshold velocity based on the data in Table

i would be approximately 55 m/sec. Considering the possibility of a high gust

of wind, an earthquake, meteor impact, landslide, etc., originating the salta-

tion of particles, it is possible for these movements to grow into dust or sand

storms, and to form eolian landforms. Additional calculations by the authors

to determine the effect of grain density on the fluid threshold velocities

showed that the difference in densities between feldspar (2.5 g/cm 3) and pyroxene

(3.6 g/cm 3) had little influence on the fluid threshold velocity of a particular

surface. However, while the fluid threshold velocity is practically unaffected,

the impact threshold velocity may be noticeably lower. This possibility, however,

has not been confirmed and will require additional study.

The vertical winds required to keep particles aloft must be considered along

with the fluid threshold velocities required to initiate particle movement.

Using the Cunningham-Stokes equation for particles less than I0 _, the Stokes

equations between I0 and lO0u, and graphically solving for particles greater

than i00_, Ryan [7] determined that vertical wind velocities required to maintain

particles aloft on Mars are less than for Earth over a large range of sizes

(I to 300_ for an atmospheric pressure of 80 mb, and 4 to 200u for 25 mb).

Using Models 1 and 2, we recalculated these vertical wind velocities showing

(Figure 3) that even with a 4-mb atmosphere, particles ranging in size from

=14_ to =140_ in diameter will require lower vertical wind velocities to maintain

them aloft on Mars.

The significance of these calculations is seen when the probable Martian

surface and environmental conditions are considered. The unconsolidated material

on the Martian surface is believed to be typically composed of a wide range of

grain sizes resulting from the action of volcanic, meteoritic impact, and

gradation processes. Assuming such a surface and a Martian wind with velocities

great enough to initiate and sustain movement of grains 0.4 to 0.6 rm_ in diameter,

it is logical that clay-size particles present will be dislodged and carried into

the atmosphere. Once these small particles are air-borne, their settling rates,

implied by the vertical wind velocities shown in Figure 3, will be similar to and

in some cases less than on Earth.
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From the results of the preceding calculations and discussion, it appears

that Martian atmospheric and surface conditions will be conducive to both

the formation of dust clouds and eolian surface features.

B. Dust Devils as Agents for Transporting Martian Unconsolidated Material

The yellow clouds on Mars have been explained in several ways. Of these

explanations, horizontal wind storms appear to be the most likely cause of the

large-scale phenomena. Smaller-scale disturbances, below the resolving power

of Earth-based observations, probably exist also. The source of many of these

small-scale phenomena may be dust devils.

Sinclair [i0], in his studies, observed high horizontal and vertical wind

velocities near the ground. Similarly, Ives [ii] observed the transport of

large amounts of dust to high altitudes through the agency of dust devils. This

has been taken by Neubauer [12] as a strong argument for proposing that small-

scale cyclonic wind systems are a possible explanation for the yellow clouds.

Neubauer [12] proposed that "...small scale cyclonic wind systems can explain

the formation of dust clouds, even in the absence of strong large scale wind

systems." His calculation of the time-dependent vertical temperature profile for

the region very close to the Martian surface indicate "...a very steep temperature

gradient near the ground around the time of temperature maximum."

Neubauer extended his analysis to the mechanism of the dust devils.

His analysis of the dust devil is based on a simple integration of the equation

of motion from the Martian surface to the top of the dust devil. The major

relationship resulting from the analysis was the maximum wind velocity at the

top of the dust devil

2 = 2g ATo/ToD (6)%x

where g is the acceleration of gravity (375 cm/sec 2 on Mars), AT o is defined

as To - To, To is the surface atmospheric temperature, To is the daily mean

surface atmospheric temperature, and b is proportional to I/D where D is the

dust devil diameter. By analogy to Earth dust devils, Neubauer obtained the

relationship bD = 4/15 and, therefore,

v _ 2.5(gDATo/To )½ • (7)
max

However, the results of Neubauer should be checked since he assumed the

main constituent of the Martian atmosphere to be nitrogen rather than the now

generally accepted carbon dioxide.

Thus, according to Neubauer "...the critical parameter for the wind velocities

in a dust devil is gATo/T o. Furthermore, one would expect the number of dust

devils created per unit area and unit time to increase as ATo/T o increases."

To support his argument for the enhanced occurrence of dust devils on Mars,

Neubauer calculated a ATo/T o of 0.21 for the maximum value resulting from his

analysis of the temperature profile near the ground and compared this value

with a typical value for Earth of 0.12 (given by Ives [II] ). This comparison
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showsthat the initiation of dust devils should occur more easily on Mars than

on the Earth.

Sinclair [I0] and Ires [ii] suggest that the up-currents of dust devils

can reach the very high altitudes, of 5 to 9 km. This is also the altitude at

which de Vaucouleur!'s []3] has observed dust clouds on Mars.

Tang [14] calculated the maximum surface wind speed on Mars that might

exist in a storm. He suggested that the maximum surface wind velocity on Mars

would be found in a tornado, assumlng that such storms could exist. The calcula-

tions were based on a formula for the maximum surface wind velocity for a con-

vective vortex as derived by Kuo [15]

o - (8)

where

V
max

= Maximum tangential velocity

Y = The ratio of specific heat at constant pressure to that at constant

volume

R = Gas constant for the atmosphere

Pc = Surface pressure at the center of the vortex (central pressure)

Po Surface pressure at a distance where the wind velocities are nil
(surrounding pressure)

k = Poisson constant

T = Surface temperature.
o

Tang obtained a maximum surface wind velocity of 114 m/sec in the vortex of a

Martian tornado when assuming a surface pressure of 25 mb and a pressure drop

to the center of the vortex of 2 mb.

III. SIGNIFICANCE OF EOLIAN SURFACE FEATURES

Interpretation of present or past climatic conditions from eolian surface

features is common in geological analysis and should be applicable to a better

understanding of the Martian and other planetary atmospheres. Numerous studies

have been made concerning conditions and factors entering into the formulation

of ripples, dunes, sand drifts, regs, sand sheets, and other related eolian

phenomena. Again, as in the physics of particle movement, comprehensive studies

of these problems should consist of theoretical, experimental, and field

approaches.

Although sand ripples have interested scientists for many years, explana-

tions for their existence and physical characteristics still remain contro-

versial. Early attempts assumed that the formation of eolian and fluvial sand
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ripples were analogous. Experimental studies, however, indicated that the
similarities betweenthe two types of ripples are superficial, and that funda-
mental differences exist in the processes and conditions under which they are
formed.

Bagnold [i] recognized that combinations of various factors were responsible
for eolian sand ripples: wind, saltation, size of surface grains, surface
relief, and the state of sand movement(erosional or depositional phases).
Becausethese factors are mutually interactive, they underlie the numerous
interpretations of the ripple phenomena.

In recent work, Sharp [16] concludes that ripple dimensions (height, wave
length,and index) are controlled by the size of grains traveling by surface
creep and wind velocity. He found that the degree of asymmetryof individual
sand ripples varies inverselywith wind velocity and directly with grain size.
Of particular interest were Sharp's observations of the rate of movementof
ripples. Underwind velocities ranging from 16 to 40 mph, ripples were observed
to moveat velocities of 0.35 to 3.2 inches per minute. By observing the rate
of movementof a particular ripple, the wind direction can be determined, and
wind velocity and ripple particle size can be calculated if values are known
for one of them. The possibility of applying this approachto observations
madefrom a Mars probe is intriguing.

Of the large-scale eolian features, sand dunesare the most valuable
in determining present climatic conditions. Their shapes, sizes, and rates of
movementare indicative of wind direction and velocity. Careful analysis of
aerial photographsof sand dunesnot only can supply information concerning the
winds that formed the dunes, but mayalso indicate the characteristics of the
material composingthe dunes.

The classical dune shapesdevelop best in desert regions where wind direc-
tion and velocity are the primary controlling factors. Dunesalso develop in
riverine and coastal areas where other factors enter into their forms. For
example, the characteristics of riverine and coastal dunes are greatly influenced
by moisture and vegetation which contribute to confused forms. Most dunes,
however, are complexfeatures and mayoccur alone or in groups.

The barchansand seif dunes cormnonto desert regions are perhaps the best
knowneolian features. The barchan, for example, is indicative of a moderate
wind with a nearly constant direction. Thewell-developed barchan is a crescent-
shapedfeature with the horns trailing off downwind. Barchansare usually
migratory and range in size from a few meters to 90meters in height and up to
400meters across. Rates of movementsas high as 50 feet per year have been
measured. Bagnold, using his wind tunnel experiments as a basis, formulated
the following equation for predicting the forward movementof barchans:

c = _- (9)
yH

where

C = Displacement (m/hr)

y = Bulk specific gravity of the sand (tons/m 3)

H = Height of the dune (m)

166 q = Rate of sand transportation by the wind (metric tons/linear meter/hr).



The rate of sand transportation (q) is defined as

q = 1.5 x 10-9 (v - Vt)3

where
v = Effective wind velocity at heights z (m/sec)

(10)

V t = Threshold velocity (m/sec).

The results of field studies have generally confirmed the validity of Bagnold's

equations.

Self dunes are relatively large features that may extend for hundreds of

miles and may reach heights as great as 200 meters. Because they line up

approximately parallel to the prevailing wind, seifs are often referred to as

longitudinal dunes. Bagnold maintained that two winds were involved in the

formation of the dunes. A prevailing gentle wind parallel to the trend of the

seif chain is responsible for the lengthening of the chain. Sand-bearing storm

winds blowing out of a single quarter controlled the height and width of the

dunes.

Assuming the availability of source material and the presence of high-

velocity winds, it appears reasonable that barchan, seif, and other dunes can

exist on Mars. Thus, analysis of photographs of Mars obtained by spacecraft

could supply valuable information concerning the direction and velocity of

surface winds.

IV. SIMULATION FACILITIES

Simulation experiments are a necessary part of any comprehensive study of

eolian processes. The results of analysis of eolian processes and the problem

of interpreting eolian landforms indicate that two types of simulation facilities

would be desirable. These are a horizontal wind facility capable of simulating

both terrestrial and Martian environments for studying the acquisition, transpor-

tation, and deposition of rock fragments; and a facility for simulating terres-

trial and Martian dust devils.

A. Horizontal Wind Facilities

Before the problem of Martian eolian processes can be approached with

confidence, it is necessary to increase our knowledge of eolian processes on

Earth. Investigators, particularly Bagnold, have shown the feasibility of wind

tunnel experiments from both a scientific and engineering point of view when the

experiments are coupled with both theoretical and field studies.

Recent advancements in simulation technology and measuring techniques make

it possible to improve the accuracy and to expand the scope of earlier studies

to include a large variety of samples (density, size, shape, etc.,of particles)

and environmental conditions.
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Although there has been very little simulation work done in the study of
Martian eolian processes, somepreliminary simulation was performed by Hertzler
et al., [17]. Thesestudies were concernedmainly with threshold velocities

required to pick up various types of dust, and with the resulting abrasion on

some selected surface coatings. However, the facilities used did not permit

adequate studies to fully define the flow field. The velocity gradients du/dz

were not determined, nor were the particulate density profiles. In fact, the

flow bed was not long enough to determine whether the flow was fully developed,

and no mention was made of the surface boundary layer. A longer flow bed would

have permitted (at least qualitatively) an investigation of the particle salta-

tion, surface creep, rate of particle movement, and small-scale surface features.

I. Terrestrial Wind Simulation Facility. The design requirements

of a facility to simulate terrestrial dust storms must be considered first.

The physical requirements are far easier to meet in the case of a terrestrial

dust storm simulator since the facility may be exhausted directly to the atmos-

phere. The major design parameters are listed in Table 2.

The suggested facility size is based only on preliminary estimates. Final

design would be based on considerations of the boundary layer thickness, attain-

ment of fully developed flow, and of the overall facility cost. The terrestrial

wind simulation facility would be much simpler to design, fabricate, and operate

because there is no requirement for vacuum pressures or for recovery of the flow

medium. The suggested major components of the facility are the flow conditioning

system (including filtration, heating or cooling, and humidification or de-

humidification), axial flow fan, flow straightening section and test bed section

(including heating or cooling systems), and monitoring instrumentation.

2. Martian Wind Simulation Facility. Ranges of the design requirements

for a facility to simulate Martian dust storms (Table 2) were acquired through

a review of the latest analytical efforts on the subject. The cost of vacuum

pumping equipment capable of handling the required flows may largely dictate

facility size. Added to this problem is the increased boundary layer thicknesses

that would be experienced by this facility over the facility required to simulate

terrestrial dust storms. The problems involved with construction of a Martian

wind simulation facility include at least the following: the facility must be

able to withstand vacuum pressure; the vacuum pumping system must maintain a

relatively large mass flow rate for extended periods of time; test section must

be large enough to compensate for boundary layer growth; and a pumping system

may be required for the recovery and recompression of the special flow medium.

Thus, the design requirements for a facility to simulate the Martian surface winds

are far more stringent than for the terrestrial simulator.

Table 2. TERRESTRIAL AND MARTIAN WIND SIMULATION

FACILITIES DESIGN REQUIREM]_qTS
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Parameter Terrestrial Martian

Flow Medium Air CO 2 and N 2

Static pressure

Wind Velocity

Test bed temperature

Air (wind) temperature

Air (wind) relative humidity

Test section area

Test section length (min.)
Particle sizes

i atmosphere

0-160 km/hr

240-328°K

240- 328 OK

-'0-100%

122 cm x 122 cm

12.2 m

>_l_

4-25 mb

0-400 km/hr

175-300°K

175-300°K

_0

122 cm x 122 cm

12.2 m

II i



3. Required Measurements. To specify completely the conditions at

any position in the facility, it is necessary to determine the local velocity,

static pressure, temperature, Reynolds number, and particulate density (con-

centration of the small particles entrained in the flow). These conditions

may be specified by obtaining the following measurements: freestream static

pressure, p; stagnation pressure, Po; stagnation temperature, To; sand flow, q_

and _L_uLa_e...........density, pp. Pressures and temperatures probably can be

measured with little difficulty by conventional instrumentation (except for

the contaminating influence of the dust particles). Determination of the parti-

culate density will be decidedly more difficult. It may be necessary to use flow

measurement techniques such as hlgh-speed motion pictures, shadowgraph, or

rake probe, to obtain useful particulate density profiles. Although the high-

speed motion pictures, shadowgraphs, and similar flow visualization techniques

may provide useful information, they will probably give only qualitative results.

It is believed that the rake probe will produce density profiles of a more

quantitative nature.

Determination of the remaining flow parameters can be accomplished by con-

ventional instrumentation. Entrainment of dust particles will cause some changes

in the flow parameters, and measurement of these effects is expected to be rela-

tively difficult for low entrainment rates. High entrainment rates may cause

larger changes in the flow field; however, the flow parameters may be more

difficult to measure because of the abrasive and clogging action of the dust.

B. Dust Devil Simulation Facility

It appears that an effort should be made toward improving the theoretical

analysis of dust devils before the design of a simulation facility, which

necessarily follows from theory, is undertaken. To accomplish this, the

following effects should be added to Neubauer's analysis: surface friction, the

influence of the dust content of the air on the dynamics of the dust devil, and

the decrease of air density with height. As mentioned earlier, Neubauer assumed

the major constituent of the Martian atmosphere to be nitrogen rather than the

recently accepted carbon dioxide. Thus, the analysis should reflect the latest

generally accepted values.

A facility to simulate terrestrial and Martian small-scale cyclonic dis-

turbances (dust devils) would be considerably different from the conventional

low speed wind tunnels used to create horizontal wind velocities. The maximum

velocities to be attained at the top of the facility would be in the range of

i0 to 60 m/sec or possibly higher depending on the grain (particle) diameter and

density of the flow medium [18]. The mass flow rate of the facility will be

small compared to the facility simulating horizontal winds.

The facility would be constructed with its flow channel mounted in a

vertical position to allow the natural and induced convection to create the re-

quired flow patterns. The heat required to warm the base of the facility

(simulating the soil surface) could be provided by resistance heaters located

in the base, or by quartz lamps directed at the base from above. Resistance

heaters in the base would be far simpler. The cyclonic motion of the outer

flow layer (simulating the outer perimeter of the disturbance) could be
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induced by _a series of jets mountedto introduce the flow tangentially. An
alternate would be to create cyclonic motion by fans (possibly of the centri-
fugal type) located on the outer perimeter of the facility and use very-low-
speedjets for massaddition. The latter methodwould be resorted to only if
the required velocities could not be attained by the tangentially mounted jets.

Parametric design studies would have to be performed to establish the size

of the facility. Although it would be desirable to use the same facility to

simulate both terrestrial dust devils and the Martian dust devils, there are

several reasons to believe that this may not be feasible. As mentioned earlier

the terrestrial simulation facility using air as a flow medium could use a large,

relatively low-speed fan exhausting to the atmosphere. The Martian simulation

facility would not be nearly so simple because attainment of the correct static

pressure would require inducing a vacuum to the level of approximately 5 to 7 mb

by means of steam ejectors or similar pumps. In addition, it may be necessary

to find an economical means of reclaiming the flow of gaseous carbon dioxide

for the Martian facility. The low static pressure of the Martian facility

would require much heavier construction than would the facility for terrestrial

simulation.

Design of facilities to simulate terrestrial and Martian dust devils must

rely on observation of terrestrial dust devils and subsequent scaling to pre-

dict the dust devils assumed to exist on Mars. It is believed that the problems

of attaining reasonable cyclonic motions and temperature and pressure profiles

can be overcome. Construction of the Martian dust devil simulator should be

no more difficult than that of the typical medium-size altitude chamber.

V. CONCLUSIONS

The small amount of available information concerning the Martian atmosphere,

particularly wind velocities, circulation patterns, probability of sand and

dust storms_ and related phenomena, is far from being satisfactory design criteria.

However, until more and higher quality information is obtained by direct sensing

methods, this deficiency can be partly alleviated by data obtained from vacuum

chambers and wind tunnel simulation experiments. Also, these studies would

improve the accuracy of interpretation of data returned from early planetary

probes. Correct interpretation of sand and dust storms and eolian landforms

could supply information concerning Martian wind velocities, circulation patterns,

and particle densities long before planetary probes penetrate the Martian lower

atmosphere.

The principal objectives of the simulation studies are to analyze the

dynamic processes in the acquisition, transportation, and deposition of rock

fragments, and to investigate methods for determining the direction and velocity

of the dominant winds of a region by the analysis of the smal_ and large-scale

eolian terrain features. A more detailed, although not necessarily complete,

list of objectives are to estimate Martian wind velocities based on dust cloud

simulation; to determine range of particle sizes (shape and mineralogy determined

by geologic studies) likely to compose Martian dust clouds and eolian surface

features; to determine particle settling rates; to determine the effects of

surface roughness on surface winds and particle movement; to study the effects

of sand and dust movement on the surface winds; and to acquire a better under-

standing of particle motion (suspension, saltation, and surface creep) in general.
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Although the results of theoretical studies are of great value, these
studies must be supplementedby experimental data to fully evaluate the eolian
phenomenonboth on Earth and on Mars. For example, the application of Bagnold's
threshold velocity equations to grain sizes smaller than 0.04-mmdiameter under
Earth conditions is highly speculative. Experimental data is also neededto
accurately determine vertical wind velocities required to maintain particles
with diameters >i00_ aloft under Martian atmospheric conditions. In general,
there is a need for simulation experiments to verify the application of the
principles of terrestrial physics of particle movementto the Martian environ-
ment •

The results of this study indicate that conditions necessary for the trans-
portation and deposition of dust and sand and the formation of characteristic
eolian landforms are probably present on Mars. Theoretical calculations indi-
cate that impact threshold velocities one meter above the surface range from
75 m/sec to 55 m/sec. The higher value was calculated using a 4-mbatmospheric
model and a roughnessfactor equivalent to a rough terrestrial desert while,
a 10-mbatmospheric model and a roughness factor approximately seven times
rougher were used in calculating the lower value. Since these minimumvelocities
are for medium-grain sands, sand dunesprobably exist on Mars. While these
velocities are high, they are within the range of velocities predicted for
Martian surface winds, and do not unduly tax the state-of-the-art of simulation
technology. In recent years, advancementsin simulation technology and measuring
techniques makeit possible to improve the accuracy and to expandthe scope
of earlier studies to include a large variety of samples (density, size, shape,
etc. of particles) and environmental conditions. Three types of simulation
facilities are desirable, a horizontal wind facility, a dust devil simulator, and

an unconsolidated material physical properties laboratory. Each facility

should be capable of simulating both terrestrial and Martian environmental

conditions.

Several areas needing further investigation are (I) evaluation and updating

previous theoretical studies for use as a guide for planning and evaluating

simulation experiments and facilities; (2) simulation of eolian processes using

horizontal wind and dust devil facilities under both terrestrial and Martian

environmental conditions; (3) supplementing these experiments with experiments

concerning the physical properties of unconsolidated material;(4) theoretical

and experimental studies of electrostatic effects; and (5) field studies to

validate theoretical and experimental studies.

Io

.

.

o

REFERENCES

Bagnold, R. A., The Physics of Blown Sand and Desert Dunes, Methuen and

Co., Lid, London, 1965.

Krumbein, W. C., "Settling Velocity and Flume-Behavior of Nonspherical

Particles," Am. Geophys. Union, Trans., 1942.

Krumbein, W. C., and Pettijohn, F. J., Manual of Sedimerltary Petrography,

Appleton-Century Co., Inc., New York, 1938.

Blair, J. T., Lucas, W. C., Stanley, J. T., and Tat.m, F. B., "Analytical

Model of the Martian Surface," Northrop Space Laboratories, Contract NAS8-

20082, Report No. TR-793-7-142, 1967. 171



. Dollfus, A., "Visual and Photographic Studies of the Planets at the Pic

du Midi," Planets and Satellites, B. M. Middlehurst, ed., University of Chicago

Press, 1961.

e

e

Johnson, R. W., "Terrain and Soil of Mars," Ninth Annual American Astronautical

Society Meeting, Los Angeles, California, 1963.

Ryan, J. A., "Notes on the Martian Yellow Clouds," Journal of Geophysical

Research, Vol. 69, No. 18, September 1964.

8. JPL Technical Memorandum No. 33-234, 1966.

e Weidner, D. K. and Hasseltine, C. L., ed., "Natural Environment Design

Criteria Guidelines for MSFC Voyager Spacecraft for Mars 1973 Mission,"

NASA TM X-53616, 1967.

i0. Sinclair, P. S., "Some Preliminary Dust Devil Measurements," Monthly Weather

Review, Vol. 92, No. 8, August 1964.

II. Iv,s, R. L., "Behavior of Dust Devils," Bull. Am. Meteorol. Soc., Vol. __28,

1947.

12.

13.

Neubauer, F. M., ,,Thermal Convection in the Martian Atmosphere," Journal

of Geophysical Research, Vol. 71, No. i0, 15 May 1966.

de Vaucouleurs, G., Physics of the Planet Mars, Faben and Faben, Ltd.,

London, 1954.

14. Tang, W., "Some Aspects of the Atmospheric Circulation on Mars," NASA

Contractor Report, NASA CR-262, July 1965.

15. Kuo, H. L., "Dynamics of Convective Vortices and Eye Formation," The Atmosphere

and the Sea in Motion, The Rockefeller Institute Press (New York) in

Association with Oxford University Press, 1959.

16. Sharp, R. P., 'Wind Ripples," Journal Geology, Vol. 71, 1963.

17. Hertzler, R. B., Wang, E. S. J., and Welbers, O. J., Development of a Martian

Environmental Simulation Facility, McDonnell Aircraft Corporation, St. Louis,

Mo., 1966.

18. Anderson, A. D., "Spherical Particle Terminal Velocities in the Martian

Daytime Atmosphere from 0 to 50 Kilometers," Lockheed Palo Alto Research

Laboratory, Palo Alto, California, LMSC 6-76-66-21, September 1966.

172



APPROVAL TM X-53693

A COLLECTION OF PAPERS RELATED TO PLANETARY METEOROLOGY

j _LL J._., W_ JL.U LL_J.

The information in this report has been reviewed for security

classification. Review of any information concerning Department of

Defense or Atomic Energy Commission programs has been made by the MSFC

Security Classification Officer. This report, in its entirety, has
been determined to be unclassified.

This document has also been reviewed and approved for technical

accuracy.

R. E. Smith

Chief, Space Environment Branch

W. W. Vaughan //
Chief, Aerospace _vironment Division

E. D. Geissler

Director, Aero-Astrodynamics Laboratory

173



DISTRIBUTION

R-DIR

Mr. Weidner

R-S___EE

Mr. L. Richards (2)

R-ASO

Mr. Williams (2)

Mr. H. S Becker

Mr. Carter

Mr. Huber

Mr. Hamby

Mr. Danenberg

Mr. Spears

Mr. Woodcock

Mr. Bradford

Mr. Brown

Mr. Madewell

Mr. Schaefer

Mr. Tidd

R-ASTR

Dr. Haeussermann

Mr. Digesu (2)
Mr. Hamilton

Mr. Hosenthien

Mr. Dodds

Mr. Moore

Mr. Wagnon
Mr. Brandner

Mr. Horton

R-E_.___O

Dr. Johnson (2)

R-ME

Mr. Kuers

Mr. Maus

Mr. Groth

I-DIR

Brig. Gen. O'Connor

R-P&VE

Dr. Lucas

Mr. Hellebrand

Mr. Palaoro

Mr. Goerner

Mr. Johns

Mr. Darwin

Mr. Laue

Mr. deSanctis

Mr. Vaccaro

Mr. Paul

Mr. Kroll

Mr. Brooksbank

R-QUAL
Mr. Grau

R-SS

Dr. Stuhlinger (2)

Mr. Downey
Mr. Bensko

Dr. Hale

Dr. Shelton

Dr. Dozier

Mr. Heller (2)
Dr. Becher

I-SAA

Mr. Belew

I-MO-MGR

Dr. Speer

R-COMP

Dr. Hoe lzer

Mr. E. Seely

Mr. P. Harness

RSIC

MS-IP

MS-IL (8)

MS-H

I-RM-M

CC-P

MS-T (5)

174


